Exhibit No. TIG-36

Docket No. RP16-___000 Exhibit No. TIG-36 Page 1 of 2

Oil and Gas Supply Module

Docket No. RP16-___-000 Oil and Exhibit No.719736/odule Page 2 of 2

The NEMS Oil and Gas Supply Module (OGSM) constitutes a comprehensive framework with which to analyze crude oil and natural gas exploration and development on a regional basis (Figure 8). The OGSM is organized into 4 submodules: Onshore Lower 48 Oil and Gas Supply Submodule, Offshore Oil and Gas Supply Submodule, Oil Shale Supply Submodule [1], and Alaska Oil and Gas Supply Submodule. A detailed description of the OGSM is provided in the EIA publication, Oil and Gas Supply Module of the National Energy Modeling System: Model Documentation 2013, DOE/EIA-m063(2013), (Washington, DC, 2013). The OGSM provides crude oil and natural gas short-term supply parameters to both the Natural Gas Transmission and Distribution Module and the Petroleum Market Module. The OGSM simulates the activity of numerous firms that produce oil and natural gas from domestic fields throughout the United States.

Figure 8. Oil and Gas Supply Model regions

OGSM encompasses domestic crude oil and natural gas supply by several recovery techniques and sources. Crude oil recovery includes improved oil recovery processes such as water flooding, infill drilling, and horizontal drilling, as well as enhanced oil recovery processes such as CO₂ flooding, steam flooding, and polymer flooding. Recovery from highly fractured, continuous zones (e.g. Austin chalk and Bakken shale formations) is also included. Natural gas supply includes resources from low-permeability tight sand formations, shale formations, coalbed methane, and other sources.

Key assumptions

Domestic oil and natural gas technically recoverable resources

The outlook for domestic crude oil production is highly dependent upon the production profile of individual wells over time, the cost of drilling and operating those wells, and the revenues generated by those wells. Every year EIA re-estimates initial production (IP) rates and production decline curves, which determine estimated ultimate recovery (EUR) per well and total technically recoverable resources (TRR) [2].

Source: U.S. Energy Information Administration, Office of Energy Analysis.