EXHIBIT NO. S-10

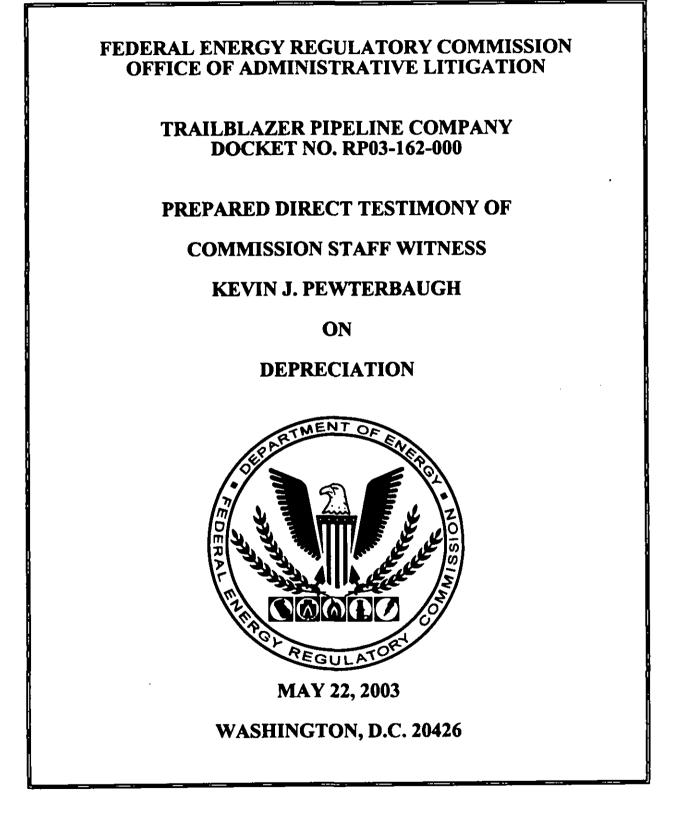


EXHIBIT NO. S-10 Page 1 of 60 pages.

FEDERAL ENERGY REGULATORY COMMISSION OFFICE OF ADMINISTRATIVE LITIGATION

Prepared Direct Testimony of: Kevin J. Pewterbaugh

in

Trailblazer Pipeline Company Docket No. RP03-162-000

1 PART A-STAFF'S DEPRECIATION ANALYSIS

2 I. <u>INTRODUCTION</u>

3 Q. Please state your name and business address.

- 4 A. My name is Kevin J. Pewterbaugh. My business address is 888 First Street, N.E.,
- 5 Washington, D.C. 20426.
- 6 Q. By whom are you employed and what is your position?
- 7 A. I am employed by the Federal Energy Regulatory Commission (FERC) as a Petroleum
- 8 Engineer in the Office of Administrative Litigation.
- 9 Q. Please briefly describe your educational background and training.
- 10 A. I received my Bachelor of Science degree in Petroleum and Natural Gas Engineering at
- 11 The Pennsylvania State University in May 1979 and have been employed continuously by
- 12 FERC since September 1979. In addition to my engineering education, I have completed

.

Exhibit No. S-10 Page 2 of 60 pages.

Prepared Direct Testimony of Kevin J. Pewterbaugh

		er Pipeline Company No. RP03-162-000	Prepared Direct Testimony of Kevin J. Pewterbaugh Depreciation
1		three depreciation seminars given by Depreciatio	n Programs, Inc., a commercial
2		organization widely recognized for its expertise i	n depreciation related matters. I have
3		also taken a course in Calgary, Alberta, Canada o	on natural gas reservoir engineering
4		sponsored by Oil and Gas Consultants Internatio	nal, Inc. I am a member of the Society of
5		Depreciation Professionals.	
6	Q.	What are your duties at the FERC?	
7	A .	My responsibilities have included, and continue	to include, determining the appropriate
8		depreciation rates in formal gas rate case proceed	lings, and providing support for such
9		rates. In performing my duties, I have done gas	supply and remaining economic life
10		analyses and have estimated future gas production	n.
11	Q.	Have you submitted testimony in any other p	roceedings?
12	А.	Yes, I have submitted testimony in the rate cases	shown in Exhibit No. S-11, Schedule
13		No. 1.	
14	Q.	What particular issues do you address in this	proceeding?
15	А.	My testimony addresses the appropriate deprecia	tion and amortization rates to be applied
16		to the depreciable and amortizable plant of Trail	blazer Pipeline Company (Trailblazer) to
17		determine the proper depreciation and amortizat	ion expenses to be included in its cost of
18		service. The depreciation rates apply to the depr	eciable plant contained in Trailblazer's
19		transmission and general plant accounts. The an	nortization rate applies to Trailblazer's
20		intangible plant. Separate depreciation rates hav	e been calculated for Trailblazer's

Exhibit No. S-10 Page 3 of 60 pages.

Trailblazer Pipeline Company Docket No. RP03-162-000	Prepared Direct Testimony of Kevin J. Pewterbaugh Depreciation
"Existing Facilities" and for its "E	xpansion Facilities." I have also provided the proper

- depreciation rate to use if the Expansion Facilities are rolled in with the Existing 2
- Facilities. 3

•

.

1

4		The depreciation and amortization rates I determined for Trailblazer's plant were
5		given to Staff witness Frances Segal for her use in determining the proper cost of service.
6		In the course of determining the appropriate depreciation rates, I determined the
7		remaining economic life of Trailblazer's facilities. I also calculated the average
8		remaining life and the percent of existing plant surviving at truncation, both with respect
9		to Trailblazer's transmission facilities. The percent of existing plant surviving at
10		truncation will be discussed later. I have given this information to Staff witness James S.
11		Taylor for his use in determining the appropriate negative net salvage rate.
12	Q.	Is Trailblazer recommending any change to its depreciation rates?
13	А.	Yes, Trailblazer is proposing to change all of its transmission, general plant, and
14		intangible depreciation and amortization rates.
15	Q.	How do your depreciation recommendations compare to Trailblazer's depreciation
16		rates?
17	A .	I am recommending a change in Trailblazer's transmission and general plant accounts. I

am accepting its intangible rate proposal. The Company's existing and proposed rates, as 18 well as my recommendations are shown below: 19

Exhibit No. S-10 Page 4 of 60 pages.

Trailblazer Pipeline Company Docket No. RP03-162-000

Prepared Direct Testimony of Kevin J. Pewterbaugh Depreciation

1

Function	Gross Plant (3/31/03) (\$)	Existing Rate (%)	Company Proposal (%)	Staff Proposal (%)
Transmission Existing Plant	283,200,082	3.60	2.90	0.90
Transmission Expansion	47,109,741	5.00	7.00	3.40
Transmission Combined	330,309,823		3.48 (calculated)	1.25
General	174,377	3.60	10.00	20.00
Intangible	90,746	33.30	0.00	0.00

2

3

This information is also provided in Exhibit No. S-11, Schedule No. 2. The dollar information was provided by Staff witness Segal. Please note that I calculated that the 4 Company's transmission rate would be 3.48 percent if the expansion facilities were rolled 5 in; the Company did not provide this value. 6

With respect to the transmission plant, based on adjusted gross plant balances as 7 of March 31, 2003, of \$330,309,823, my recommendations would decrease the 8 Company's proposed annual depreciation expense by over \$7,300,000. However, Staff 9 witness Segal will determine the actual effect on the cost of service, based on the 10

Exhibit No. S-10 Page 5 of 60 pages.

Trailblazer Pipeline Company Docket No. RP03-162-000 Prepared Direct Testimony of Kevin J. Pewterbaugh Depreciation

depreciation and amortization rates I provided her and the appropriate gross plant 1 2 amounts. Would you summarize your analysis with respect to the proper depreciation and 3 Q. amortization rates to apply to Trailblazer's depreciable and amortizable plant? 4 With respect to Trailblazer's transmission facilities, Trailblazer is proposing a rate for its 5 Α. Existing Facilities that, absent any changes in plant, would recover the remainder of its 6 investment in about ten years; under the same scenario, it would recover the remainder of 7 its investment in its Expansion Facilities in about 14 years. I believe these time frames 8 are too short for the Company's supply and market characteristics. Further, it does not 9 make sense for the Expansion Facilities, which are compressor station equipment, to last 10 longer than the existing pipeline upon which its usefulness will depend. 11 I determined the remaining economic life of Trailblazer's transmission facilities to 12 be 35 years from December 31, 2001. This is the latest production and reserve data 13 available at the time of the preparation of this testimony. My recommendation is based 14 on a study that includes supply, demand, and competition. Trailblazer's supply area is 15 primarily Colorado and Wyoming. I determined that the amount of reserves in this 16 supply area can support production for at least the next 35 years. Demand for natural gas, 17 as discussed later, both in Trailblazer's market area and nationally, is projected to increase 18 in the future. These findings support the remaining economic life I have used for 19 Trailblazer's facilities. Further, I conclude that it is premature to shorten Trailblazer's 20

.

.

.

Exhibit No. S-10 Page 6 of 60 pages.

Trailblazer Pipeline Company	Prepared Direct Testimony of Kevin J. Pewterbaugh
Docket No. RP03-162-000	Depreciation

1		remaining life based on the uncertain effects of competition. The remaining economic
2		life is used in the calculation of the depreciation rates. Based on that remaining economic
3		life, I calculated a depreciation rate for Trailblazer's transmission facilities.
4		With respect to Trailblazer's general plant facilities, I used an average service life
5		(ASL) approach to determine the appropriate depreciation rate for the general plant
6		function. Using that approach, my analysis shows that the depreciation rate should be
7		raised above the company's proposal, from 10.00 percent to 20.00 percent.
8		Finally, with respect to intangible plant, the account is fully accrued, and I agree
9		with Trailblazer's proposal of a 0.00 percent rate.
10	Q.	Do you sponsor any Exhibits?
11	А.	Yes. Besides my testimony, which is designated as Exhibit No. S-10, I am sponsoring
12		Exhibit Nos. S-11 and S-12. Exhibit No. S-11 contains the supporting schedules of my
13		depreciation analysis. I have included a Table of Contents for Exhibit No. S-11 in the
14		front of that exhibit. Exhibit No. S-12 contains my workpapers.
15		Exhibit No. S-10 is divided into three parts, A through C. Part A is subdivided
16		into four main sections. Section I is this introduction, Section II presents my depreciation
17		analysis for Trailblazer's transmission facilities, Section III presents my analysis for
18		Trailblazer's general plant, and Section IV summarizes my depreciation analysis.
19		With respect to Exhibit No. S-11, Schedule No. 1 lists the other proceedings in
20		which I have submitted testimony, Schedule No. 2 provides a summary of my

Exhibit No. S-10 Page 7 of 60 pages.

Trailblazer Pipeline Company	Prepared Direct Testimony of Kevin J. Pewterbaugh
Docket No. RP03-162-000	Depreciation

1	depreciation and amortization rate recommendations, as well as the percent surviving at
2	truncation data used by Staff witness Taylor in this proceeding. Finally, Schedule No. 3
3	provides a map of Trailblazer's facilities. I will describe each of the remaining schedules
4	later in my testimony.
5	Part B of my testimony contains my discussion of the testimony of Trailblazer
6	witness Geoffrey E. Simmons. Part C of my testimony contains my discussion of the
7	testimony of Trailblazer witness Ronald Harrell.

8 II. STAFFS DEPRECIATION ANALYSIS FOR TRANSMISSION FACILITIES

9 **Q.**

Would you provide an overview of how you determined the appropriate

10 depreciation rates for Trailblazer's transmission facilities?

- A. Yes. Almost all of Trailblazer's investment is in transmission plant. The depreciation
 rate I determined is designed to recover this investment over the remaining economic life
 of Trailblazer's facilities.
- 14 The depreciation rate is determined from the remaining economic life, an 15 adjustment for interim retirements, and the amount of the gross plant that is left to be 16 recovered. The remaining economic life of the pipeline is generally the most important 17 consideration in determining the depreciation rate. Most of this analysis goes toward 18 determining the appropriate remaining economic life for Trailblazer's facilities.

Exhibit No. S-10 Page 8 of 60 pages.

Trailblazer Pipeline Company Docket No. RP03-162-000 Prepared Direct Testimony of Kevin J. Pewterbaugh Depreciation

1		In determining the remaining economic life, I first determined how long there will
2		be a gas supply sufficient to support Trailblazer's operations; if there is no gas to
3		transport, Trailblazer's operations will be over. The number of years that there will be a
4		sufficient supply is determined through a study involving gas production, remaining
5		reserves (reserves that have already been discovered), and an estimate of future reserves
6		(gas that has not yet been discovered).
7		After determining how many years there will be a sufficient supply, which is also
8		called the supply life, I discuss demand and competition. I have concluded that these
9		factors will not cause Trailblazer to cease operations while there is still a sufficient
10		supply. Therefore, the supply life in this case will equal the remaining economic life.
11		The next step after determining the remaining economic life is to make an
12		allowance for interim retirements. These are retirements that will occur before the end of
13		the remaining economic life. Not accounting for these retirements would lead to an
14		underrecovery of the Company's investment at the end of the remaining economic life.
15		Finally, after determining the allowance for interim retirements, the depreciation
16		rate is calculated based on the percentage of the Company's plant that has not yet been
17		recovered.
18	Q.	What is the basis of your recommendation?
19	А.	I have developed my recommendation on the basis of my analysis, which is premised on
20		the Commission's Uniform System of Accounts for Natural Gas Companies definition of

.

.

Exhibit No. S-10 Page 9 of 60 pages.

Trailblazer Pipeline Company	Prepared Direct Testimony of Kevin J. Pewterbaugh
Docket No. RP03-162-000	Depreciation

1	depreciation, and applied guidelines set out in the opinion rendered in the United States
2	Court of Appeals for the District of Columbia Circuit in Memphis Light, Gas and Water
3	Division v. Federal Power Commission (Memphis), 504 F.2d 225 (1974).
4	The Commission's Uniform System of Accounts for Natural Gas Companies
5	defines depreciation as:
6 7 8 9 10 11 12 13 14 15	the loss in service value not restored by current maintenance, incurred in connection with the consumption or prospective retirement of gas plant in the course of service from causes which are known to be in current operation and against which the utility is not protected by insurance. Among the causes to be given consideration are wear and tear, decay, action of the elements, inadequacy, obsolescence, changes in the art, changes in demand and requirements of public authorities, <u>and</u> , in the case of natural gas companies, the exhaustion of natural resources. (Emphasis added.)
16	Consistent with these guidelines, service value (original cost less net salvage)
17	should be allocated according to the total number of service units, such as Mcf (thousand
18	cubic feet) of gas or units of time. The transportation of service units of gas, or passage
19	of service units of time, represents the loss in service value, and that loss is premised on
20	the concept that as the number of service units diminish, the service value of depreciable
21	property also diminishes until it completely expires.
22	In the Memphis decision, the Court states:
23 24 25	In order to be "just and adequate" a reserve life depreciation rate must be based upon the useful life of the <u>particular property</u> involved. We therefore believe that it is the Commission's

.

Exhibit No. S-10 Page 10 of 60 pages.

Trailblazer Pipeline Company Docket No. RP03-162-000	Prepared Direct Testimony of Kevin J. Pewterbaugh Depreciation	

1 2 3 4 5 6		obligation to make some reasoned estimate of the useful life of the property here involved. 43/ even though to do so would no doubt require an estimate of future reserves. We realize that such a prognostication would necessarily be only an estimate, but at least the Commission would thereby attempt to ascertain how the gas shortage had affected the useful life of this property.
7		43/ It is possible that insufficient reserves could have a greater effect
8		on one type of company property, or property located in one area, than on other property. In such a case, the Commission could
9 10		arrive at a composite depreciation rate, taking into account
11		potentially differing useful lives, rather than as here, a uniform rate
12		system wide.
		504 F.2d at 235 (emphasis by single underline in original;
13 14		emphasis by double underline added, which highlights the
15		requirement of an estimate of future reserves).
16	Q.	Is remaining economic life the same as useful life?
16 17	Q. A.	Is remaining economic life the same as useful life? In this context, the terms can be considered synonymous. <u>Remaining economic life</u> is the
	-	
17	-	In this context, the terms can be considered synonymous. <u>Remaining economic life</u> is the
17 18	-	In this context, the terms can be considered synonymous. <u>Remaining economic life</u> is the period, from a given point in time, during which property continues to provide service.
17 18 19	-	In this context, the terms can be considered synonymous. <u>Remaining economic life</u> is the period, from a given point in time, during which property continues to provide service. As I am using the term, remaining economic life is defined by nonphysical reasons for
17 18 19 20	-	In this context, the terms can be considered synonymous. <u>Remaining economic life</u> is the period, from a given point in time, during which property continues to provide service. As I am using the term, remaining economic life is defined by nonphysical reasons for retirement such as exhaustion of supply or lack of demand. <u>Average remaining life</u> ,
17 18 19 20 21	-	In this context, the terms can be considered synonymous. <u>Remaining economic life</u> is the period, from a given point in time, during which property continues to provide service. As I am using the term, remaining economic life is defined by nonphysical reasons for retirement such as exhaustion of supply or lack of demand. <u>Average remaining life</u> , which is used in the depreciation calculation, but not in the remaining economic life

Exhibit No. S-10 Page 11 of 60 pages.

Trailblazer Pipeline Company	Prepared Direct Testimony of Kevin J. Pewterbaugh
Docket No. RP03-162-000	Depreciation
Docket No. RF03-102-000	

- 1 based on supply considerations alone. It is a factor in determining the remaining
- 2 economic life, but it is not the only factor.
- Q. What depreciation approach did you use to determine the appropriate depreciation
 rate for Trailblazer's transmission facilities?
- 5 I used the Straight-line Method, Remaining Life Technique (straight-line method) in my 6 depreciation analysis.

7 Q. What is the straight-line method of depreciation?

The straight-line method is designed to recover the investment in equal annual Α. 8 installments over the useful life or the remaining economic life of the facilities, and is 9 based on service units of time. This method is used to calculate a depreciation rate based 10 on the remaining economic life of the asset to be depreciated. This rate is then applied to 11 the depreciable base. Another name for the depreciable base is the gross plant (although 12 land, which is not depreciable, must be removed from gross plant for depreciation 13 purposes). The straight-line method allocates the recovery of the gross plant uniformly 14 over the asset's remaining economic life, which results in a uniform charge to each 15 generation of ratepayers. 16 Average service life (ASL) and average remaining life (ARL) are terms associated 17 with the straight-line method. ASL applies to the average service life expectancy of a 18

19 group of assets at installation when all units are new. The ARL applies to the average

Exhibit No. S-10 Page 12 of 60 pages.

1		remaining life expectancy of a group of assets at any point in time after the date of initial
2		installation.
3	Q.	What is the depreciation formula used to calculate depreciation rates using the
4		straight-line method?
5	A .	The depreciation rate using the straight-line method is derived by dividing the percent of
6		the net plant left to be recovered by the Average Remaining Life (ARL) of the facility.
7		The ARL will be discussed later. The actual depreciation formula is given in Exhibit No.
8		S-11, Schedule No. 4.
9		For Trailblazer, the critical factor in determining the proper depreciation rates is
10		the ARL. The ARL is determined from consideration of both physical and economic
11		factors, and is itself dependent on the remaining economic life determined for the
12		Company. In my analysis, I first determined the remaining economic life due to
13		economic factors; then I determined the ARL. Not all units of plant are expected to
14		remain in service throughout the remaining economic life of the facility as a whole; some
15		of the units will be retired early due to such factors as wear and tear or actions of the
16		elements. The ARL takes these factors into account. If these factors are not accounted
17		for, then the depreciation rate in the future will be applied to a smaller gross plant than

that for which it was designed, resulting in a smaller annual expense, and ultimately, an

underrecovery of the Company's investment. It is the ARL, not the remaining economic

life, that is used in the depreciation formula to determine the depreciation rate.

Trailblazer Pipeline Company Docket No. RP03-162-000

18

19

20

Prepared Direct Testimony of Kevin J. Pewterbaugh Depreciation

Exhibit No. S-10 Page 13 of 60 pages.

Trailblazer Pipeline Company Docket No. RP03-162-000 Prepared Direct Testimony of Kevin J. Pewterbaugh Depreciation

Mr. Pewterbaugh, please describe Trailblazer's facilities as they relate to your 1 Q. study. 2 Trailblazer facilities are divided into two groups: its Existing Facilities and its Expansion 3 Α. Facilities. Trailblazer's Existing Facilities stretches from Colorado eastward to Beatrice, 4 Nebraska. Trailblazer has 436 miles of transmission lines, mainly in Colorado, and 5 Nebraska, with a small amount in Wyoming. The above mileage is taken from 6 Trailblazer's 2001 FERC Form No. 2: Annual Report of Major Natural Gas Companies 7 (Form No. 2). Essentially all of Trailblazer's plant is functionalized as transmission. 8 Trailblazer's Expansion Facilities consist of compressor station plant. Trailblazer 9 added two new compressor stations and upgraded an existing compressor station. A map 10 of Trailblazer's system was included as Exhibit No. S-11, Schedule No. 3. 11 Where does the gas transported by Trailblazer originate? 0. 12 Trailblazer receives gas for transportation from the Rocky Mountain area, primarily from 13 Α. Colorado and Wyoming. Specifically, Trailblazer receives gas for throughput mainly 14 from interconnections with Wyoming Interstate Company, Ltd., Colorado Interstate Gas 15 Company, Public Service Company of Colorado, and KN Energy, Inc., near the western 16 end of its system. This information was taken from the response provided by Trailblazer 17 to Staff Data Request (JST-1), Item No. 3, its most recent flow diagram. 18

Exhibit No. S-10 Page 14 of 60 pages.

Trailblazer Pipeline Company Docket No. RP03-162-000

1

Prepared Direct Testimony of Kevin J. Pewterbaugh Depreciation

Determination of Remaining Economic Life for Transmission Facilities

2 Q. What is the general approach you used in determining the remaining economic life 3 of Trailblazer's facilities?

A. The general approach I used in determining the remaining economic life for Trailblazer's facilities was first to determine the supply life. For Trailblazer's transmission facilities,
most of its supply is from Colorado and Wyoming. I used these areas to determined the supply life for Trailblazer's facilities. This supply life will be applicable for both
Trailblazer's Existing Facilities and for its Expansion Facilities.

9 To determine the supply life based on Trailblazer's main supply area of Colorado 10 and Wyoming, I obtained historical production, remaining reserve and ultimate recovery 11 data for this area, from 1977 through 2001. Ultimate recovery represents the sum of the 12 cumulative production and the current estimate of remaining proved reserves. Ultimate 13 recovery estimates are made at points in time, and increase as more current estimates are 14 made and heretofore undiscovered reserves are added to the remaining proved reserves. 15 category. Remaining proved reserves are also termed simply remaining reserves.

16I then extrapolated historical production and historical estimates of ultimate17recovery into the future to determine the supply life of Trailblazer's facilities. When18supply that can be produced economically is exhausted by production, the useful life of19the facilities is over. I examined demand and competition to determine their effect on the

.

Exhibit No. S-10 Page 15 of 60 pages.

Traiblazer Pipeline Company	Prepared Direct Testimony of Kevin J. Pewterbaugh
Docket No. RP03-162-000	Depreciation

1	supply life in d	supply life in determining a remaining economic life for Trailblazer's facilities. I	
2	determined that	determined that demand and competition will not negatively impact, or shorten, the	
3	supply life. In	other words, supply life in this instance will be synonymous with	
4	remaining economic life.		
5	In following the above approach for determining the remaining economic life of		
6	the transmission facilities, my testimony is divided into six parts:		
7	(1)	identifying the supply area involved,	
8 9		obtaining historical production, remaining reserves, and ultimate recovery data for the supply area,	
10	(3)	extrapolating ultimate recovery into the future,	
11	(4)	extrapolating production into the future,	
12	(5)	determining the supply life of Trailblazer's facilities, and	
13 14		discussing demand and competition, and determining the remaining economic life.	
15	After th	ne remaining economic life is determined, the depreciation rate is	
16	determined in t	the following two sections:	
17	(7)	adjusting the remaining economic life for interim retirements, and	
18	(8)	calculating the depreciation rate for Trailblazer's transmission facilities.	

Exhibit No. S-10 Page 16 of 60 pages.

Trailblazer Pipeline Company Docket No. RP03-162-000

.

.

1

Prepared Direct Testimony of Kevin J. Pewterbaugh ______ Depreciation

(1) Identifying the Supply Area Involved

2	Q.	What is Trailblazer's main supply area?
3	A .	Trailblazer receives gas mainly from Colorado and Wyoming. I performed my study for
4		these areas. With Trailblazer just being a transporter of gas, rather than also an owner of
5		gas, the specific locations of Trailblazer's supply may shift within this large area over
6		time.
7		In its supply area, Trailblazer will receive throughput not only from production
8		from discovered reserves, but also from production from future discoveries. I will discuss
9		the supply from future discoveries later.
10		(2) Obtaining Historical Production, Remaining Reserves, and Ultimate Recovery Data
11	Q.	Mr. Pewterbaugh, where did you obtain the historical production, remaining
12		reserves and ultimate recovery data used in your analysis?
13	А.	I obtained production, remaining reserves, and ultimate recovery data for Trailblazer's
14		supply area from two publications of the Energy Information Administration (EIA). I
15		obtained production and reserve information from its annual publication, U.S. Crude Oil,
16		Natural Gas, and Natural Gas Liquids Reserves (EIA Annual Report); this data is as of
17		December 31, 2001, the latest data available at this time. I obtained cumulative

Exhibit No. S-10 Page 17 of 60 pages.

•

Prepared Direct Testimony of Kevin J. Pewterbaugh

		er Pipeline Company Prepared Direct Testimony of Kevin J. Pewterbaugh lo. RP03-162-000 Depreciation
1		production information, from which I was able to calculated ultimate recovery, from its
2		publication, U.S. Qil and Gas Reserves, By Year of Field Discovery.
3		Historical production and remaining reserve data is provided in Exhibit No. S-11,
4		Schedule No. 5. For the year 2001, production was 2,168 Bcf, and remaining reserves
5		was 30,925 Bcf.
6		Ultimate recovery data for the Colorado-Wyoming area is shown in Exhibit No.
7		S-11, Schedule No. 6. Ultimate recovery for a particular year is the sum of the
8		cumulative production up to that point and the remaining reserves as reported that year. I
9		determined historical annual ultimate recovery levels for 1977 through 2001. As shown
10		in Exhibit No. S-11, Schedule No. 6, ultimate recovery, as of the end of 2001, was 68,213
11		Bcf.
12		(3) Extrapolating Ultimate Recovery into the Future
13	Q.	Why did you extrapolate ultimate recovery into the future?
14	А.	I extrapolated ultimate recovery into the future because the current sum of the cumulative
15		production and the estimated remaining proved reserves will not give a complete picture
16		of the total amount of gas that will eventually be produced in Trailblazer's supply area.
17		Future discoveries will also be made and subsequently produced. Extrapolating historical
18		estimates of ultimate recovery accounts for these future discoveries. The existence of

Exhibit No. S-10 Page 18 of 60 pages.

Trailblazer Pipeline Company	Prepared Direct Testimony of Kevin J. Pewterbaugh
Docket No. RP03-162-000	Depreciation

1		future discoveries will be supported in more detail later. Extrapolating historical
2		estimates of ultimate recovery results in the maximum level that the ultimate recovery
3		will attain. I have termed that maximum level the "final" ultimate recovery level to
4		distinguish it from historical or intermediate ultimate recovery levels.
5	Q.	How did you extrapolate ultimate recovery into the future?
6	A .	I extrapolated ultimate recovery into the future using the least squares curve fitting
7		technique to fit an S-Curve to the historical data. This curve traces the shape that
8		estimates of ultimate recovery are expected to have: slowly increasing as a producing
9		area is initially discovered and developed, increasing at a greater rate as development of
10		the area increases, and finally slowly increasing again as an area reaches its mature phase,
11		with most of the area explored and developed. The preceding description follows an S-
12		shape, which is also the shape of the S-Curve, and shows that the application of the S-
13		Curve is appropriate. Further support for using an S-Curve for ultimate recovery will be
14		given later.

15 Q. What is the least squares curve fitting technique and why do you use it?

A. This technique provides the estimate through the given data that has the least amount of
deviation from the given data for the type of curve chosen. In other words, this technique
provides the estimate that is closest to the actual data, for the type of curve chosen. This
technique uses mathematical formulas to calculate the best fit curve through the given
data.

Exhibit No. S-10 Page 19 of 60 pages.

Trailblazer Pipeline Company	Prepared Direct Testimony of Kevin J. Pewterbaugh
Docket No. RP03-162-000	Depreciation

1		The results of my extrapolations of the ultimate recovery data is given for the
2		Colorado-Wyoming supply area in Exhibit No. S-11, Schedule No. 7. Pages 1 through 3
3		of the schedule provide a table showing annual estimates of ultimate recovery, while page
4		4 of the schedule presents the ultimate recovery information graphically, from which the
5		fit can be seen visually.
6	Q.	You extrapolated ultimate recovery using an S-Curve; how did you arrive at the
7		final ultimate recovery levels?
8	А.	I arrived at the final ultimate recovery level by determining the point when the rate of
9		change between the annual ultimate recovery estimates reaches a maximum. On a
10		smooth curve, the difference between an ultimate recovery estimate from one year to the
11		next will increase for a number of years. Eventually, this difference will reach a
12		maximum. After that, the difference between ultimate recovery estimates will become
13		progressively smaller each year as the curve flattens out. The point at which the
14		maximum difference occurswhen the annual differences stop getting larger, and start
15		getting smalleris termed the inflection point. The ultimate recovery level will increase
16		each year, but after the inflection point, it will increase at a decreasing rate. I used the
17		inflection point to determine the final ultimate recovery level.
18		I calculated the annual changes in the actual historical ultimate recovery estimates
19		as shown in Exhibit No. S-11, Schedule No. 7, pages 1 through 3, under the column
20		"Change in Actual Ult. Rec." As can be seen from this schedule, the largest recent change

Exhibit No. S-10 Page 20 of 60 pages.

Trailblazer Pipeline Company Docket No. RP03-162-000	Prepared Direct Testimony of Kevin J. Pewterbaugh Depreciation

occurred in 2001. This can be considered a conservative estimation because the
 inflection point may not have actually been reached yet. The later the inflection point, the
 greater the final ultimate recovery level.

Also in Exhibit No. S-11, Schedule No. 7, Pages 1 through 3, I have calculated the 4 amount of change in the annual ultimate recovery levels as given by the estimated curve. 5 The annual changes in the estimated curve are determined, in part, by the final ultimate 6 recovery level--changing the final ultimate recovery level changes the differences in 7 ultimate recovery estimates from year to year and changes the inflection point of the 8 curve. I have adjusted the final ultimate recovery level until the inflection point in the 9 estimated data occurs in the same year as the inflection point in the actual data, 2001. 10 With this inflection point, the corresponding final ultimate recovery level is 115,000 Bcf 11 for Trailblazer's supply area. 12

13 Q. What amount of undiscovered gas corresponds to this ultimate recovery level?

A. The final ultimate recovery level, or the maximum level that ultimate recovery will attain,
is the sum of the cumulative production and the remaining reserves after all of the
reserves have been discovered. For the Colorado-Wyoming area, I calculated the final
ultimate recovery level as of December 31, 2001. I determined that level to be 115,000
Bcf. This level consists of cumulative production of 37,288 Bcf, and remaining
discovered reserves of 30,925 Bcf (both shown in Exhibit No. S-11, Schedule No. 6),
leaving a remaining undiscovered reserves level of 46,787 Bcf.

Exhibit No. S-10 Page 21 of 60 pages.

Trailblazer Pipeline Company	Prepared Direct Testimony of Kevin J. Pewterbaugh
Docket No. RP03-162-000	Depreciation

1 Q. Is this level of undiscovered reserves of 46,787 Bcf the level that corresponds to your

2

economic remaining life recommendation of 35 years?

- 3 A. No, my recommendation incorporates a smaller amount as will be discussed later.
- 4

(4) Extrapolating Production in the Future

- 5 Q. Why did you extrapolate production into the future?
- A. The final ultimate recovery level is only one component necessary to determine the
 supply life; how quickly the reserve portion of the final ultimate recovery level will be
 exhausted, or produced, is also necessary to determine the supply life. To determine this
 factor, I extrapolated production into the future based on the historical annual production
 that was reflected in Exhibit No. S-11, Schedule No. 5.

11 Q. On what basis do you extrapolate production into the future?

A. For a given supply area, it is reasonable to assume that production will increase for a
period of time and then begin to decline. Production will not increase indefinitely into
the future because of the finite remaining resource base. Instead, production will achieve
a maximum annual level at some point in time, at the peak year, and then begin to
decline.

Production from a given producing area is expected to follow the shape of a bellshaped curve, starting slowly as the area is first discovered and developed, increasing to

Exhibit No. S-10 Page 22 of 60 pages.

Trailblazer F	ipeline Company
Docket No.	RP03-162-000

.

Prepared Direct Testimony of Kevin J. Pewterbaugh
Depreciation

1	some peak year of production as the area becomes fully developed, and then decreasing as
2	reserves are exhausted.
3	The approach that I have used is based on the probability-type model as developed
4	originally by M. King Hubbert (see his chapter in Oil and Gas Supply Modeling, U.S.
5	Dept. of Commerce, May 1982). The theory predicts that natural resources will be
6	discovered and produced in a way that resembles a bell-shaped curve. The Onshore
7	South Louisiana area, for example, has shown this bell-shaped trend in its natural gas
8	production history.
9	This theory also supports the use of the S-Curve for extrapolating historical
10	ultimate recovery levels into the future. Ultimate recovery is composed of cumulative
11	production and reserves until such time as all the reserves are produced and become part
12	of the cumulative production total. Cumulating annual production estimates as given by a
13	bell-shaped curve will result in a cumulative production curve with an S-shape.
14	Therefore, using an S-Curve is appropriate for estimating cumulative production and
15	ultimate recovery.
16	Historical production from the Colorado-Wyoming supply area is still increasing.
17	I used a bell-shaped curve fit to historical annual production, in conjunction with my
18	ultimate recovery estimate, to determine the supply life for this area and, therefore, for
19	Trailblazer.

Exhibit No. S-10 Page 23 of 60 pages.

٠

Trailblazer Pipeline Company	Prepared Direct Testimony of Kevin J. Pewterbaugh
Docket No. RP03-162-000	Depreciation

1	Q.	How did you extrapolate production into the future?
2	A .	I extrapolated production into the future using the least squares method of fitting a bell-
3		shaped curve to the historical production data. The bell-shaped curve is determined from
4		the historical data and from the peak year, which is the year in which the maximum
5		annual production will occur. The least squares calculations I performed give a value for
6		R-Squared (R^2) for each curve, which is a measure of the goodness of fit. The values for
7		R^2 range from 0.00 to 1.00, with 0.00 being the worst fit and 1.00 being the best fit. The
8		R ² values for the least squares curve I used to extrapolate production is approximately
9		0.88 for the Colorado-Wyoming supply area, which represents an acceptable fit. This
10		curve uses a peak year occurring in 2016. The curve I calculated is shown both
11		numerically and graphically in Exhibit No. S-11, Schedule No. 8.
12	Q.	How did you determine which peak year to use?
13	A .	When historical data shows that the peak year has already occurred, that date is used.
14		However, for the Colorado-Wyoming supply area, historical production is still increasing;
15		therefore, another approach to choosing a peak year must be used.
16		It is reasonable to assume that production will ultimately recover as large a
17		percentage of reserves as possible. I tried different peak years until the cumulative
18		production curve first met or exceeded the final ultimate recovery level.
19		Exhibit No. S-11, Schedule No. 9, shows the results of cumulative production
20		curves based on peak years of 2014, 2015, 2016, and 2017. From this schedule, it can be

Exhibit No. S-10 Page 24 of 60 pages.

Trailblazer Pipeline Company Docket No. RP03-162-000 Prepared Direct Testimony of Kevin J. Pewterbaugh Depreciation

seen that a cumulative production curve based on a peak year of 2014 never attains the 1 final ultimate recovery level, while a curve based on a peak year of 2015 does. A peak 2 year of 2015 is the earliest peak year that meets the final ultimate recovery level. Bell-3 shaped curves with peak years before the year 2015 would not be as acceptable, given the 4 ultimate recovery curve, because production following these curves will recover less of 5 the reserve portion of the final ultimate recovery level, than a curve with a peak year of 6 2015, and will never reach the final ultimate recovery level. The year 2015 is the earliest 7 peak year that results in a curve where cumulative production reaches the final ultimate 8 recovery level. This would normally have been the peak year I would have chosen. 9 However, I believe a curve based on a peak year of 2015 would reach the final ultimate 10 recovery level too slowly. As can be seen from Exhibit No. S-11, Schedule No. 9, this 11 extrapolation would not reach the ultimate recovery level of 115,000 Bcf until the year 12 2074, at which time the annual production would be only 38 Bcf. The year 2016 is the 13 next earliest peak year. It reaches the final ultimate recovery level in 2052--22 years 14 sooner than the other choice, which makes sense considering the anticipated future 15 demand for natural gas, as will be discussed later. When this estimate reaches the final 16 ultimate recovery level, the annual production would be 497 Bcf, more than ten times the 17 amount using a peak year of 2015. For these reasons, I used a curve based on a peak year 18 of 2016 to determine the supply life for the Colorado-Wyoming area. 19

Exhibit No. S-10 Page 25 of 60 pages.

Trailblazer Pipeline Company Docket No. RP03-162-000 Prepared Direct Testimony of Kevin J. Pewterbaugh Depreciation

1 Q. Why did you use a curve with the peak year of 2016 rather than some later peak

2 year that will recover the reserves faster?

- A. A curve could be chosen with a peak year out far enough that production would never decrease, but simply keep increasing until the reserves were depleted. However, this is not realistic based on how gas fields are depleted. The characteristic of producing natural gas is for production to decline from a peak as the reserves are exhausted. My approach of using the earliest peak year that recovers the final ultimate recovery level results in the most complete curve. I believe changing the peak year from this approach by increasing it by only one year best represents what may happen.
- 10If I were to use a peak year of 2025, for example, it would more closely track the11more recent actual production data (see Exhibit No. S-11, Schedule No. 8, for a graph of12the estimate using a peak year of 2016), and it still would not exhaust the final ultimate13recovery level until 2034. The annual production at that time, however, would be 2,52214Bcf, which is greater than the current (2001) annual production level of 2,168 Bcf, and it15would not have as complete of a bell-shaped curve as a curve based on a peak year of162016. I do not believe that a peak year after the year 2016 is appropriate.

Exhibit No. S-10 Page 26 of 60 pages.

Trailblazer Pipeline Company Docket No. RP03-162-000

1

Prepared Direct Testimony of Kevin J. Pewterbaugh Depreciation

(5) Determining the Supply Life of Trailblazer's Facilities

2 Q. How did you use the extrapolation of annual production in determining the supply 3 life?

The year in which reserves are exhausted by the cumulative production curve is the 4 Α. endpoint of the remaining economic life. This occurred in the year 2052, or 51 years 5 from the year 2001 (as can be seen in Exhibit No. S-11, Schedule Nos. 8 and 9). I have 6 shortened this length of time to 35 years, considering estimates much beyond 35 years to 7 be too speculative, recognizing that estimates become more speculative the further into 8 9 the future one goes. I have used this 35-year period as my recommendation for the supply 10 life for Trailblazer's transmission facilities. At the end of this 35-year period, production is projected to still be about 61 percent of the current amounts (1,330/2,168), which is a 11 significant amount. At this point the ultimate recovery level would be 101,717 Bcf, as 12 shown on Exhibit No. S-11, Schedule Nos. 8, Page 2 of 3 pages, and Schedule No. 9. 13 This amount is made up of, as of December 31, 2001, cumulative production of 37,288 14 Bcf, and remaining reserves of 30,925 Bcf, both shown in Exhibit No. S-11, Schedule 15 No. 6, leaving an undiscovered reserves level of 33,504 Bcf. This is about 72 percent of 16 the total undiscovered level I calculated of 46,787 Bcf, and can therefore be considered 17 conservative. 18

Trailblazer Pipeline Company Docket No. RP03-162-000 Exhibit No. S-10 Page 27 of 60 pages.

Depreciation

Prepared Direct Testimony of Kevin J. Pewterbaugh

1	Q.	What support do you have that the final ultimate recovery level will be greater in
2		the future than the current ultimate recovery level?
3	A .	There are three considerations that support the position that the ultimate recovery
4		estimate will continue to grow: (1) historical additions to proved remaining reserves in
5		Trailblazer's supply area, (2) recent and future estimated drilling for new reserves in this
6		area, and (3) estimates of undiscovered gas remaining in this area as published from an
7		independent source.
8	Q.	Please describe the historical additions to which you refer.
9	A .	I refer to the annual additions to reserves, which are also additions to the ultimate
10		recovery, that occur each year.
11		The EIA Annual Report publishes reserves that were discovered each year. For
12		the Colorado-Wyoming area, these reserve additions are shown in Exhibit No. S-11,
13		Schedule No. 10, and show that from 1996 through 2001, additions in the Colorado-
14		Wyoming area have averaged 2,130 Bcf a year. It is reasonable to believe that additions
15		will continue in the future.
16	Q.	Please describe the drilling information to which you refer.
17	А.	The Oil and Gas Journal, a weekly publication, annually provides its review of the
18		previous year's exploratory drilling and its forecast of the next year's exploratory drilling.
19		The purpose of exploratory drilling is to find undiscovered or unproved reserves. Its
20		latest annual report, for 2002, shows an estimate of 351 exploratory wells drilled in the

Exhibit No. S-10 Page 28 of 60 pages.

Trailblazer Pipeline Company	Prepared Direct Testimony of Kevin J. Pewterbaugh
Docket No. RP03-162-000	Depreciation

1		Colorado-Wyoming area in 2002. It also forecasts 284 exploratory wells to be drilled in
2		2003. These data are shown in Exhibit No. S-11, Schedule No. 11.
3		The drilling figures on Exhibit No. S-11, Schedule No. 11, do not mean that all
4		these wells were or will be completed as successful gas wells, but it shows that there is a
5		level of interest in Trailblazer's supply area, and the expectation that undiscovered or
6		unproved reserves still exist.
7	Q.	Please describe the independent source to which you refer as support for the
8		existence of heretofore undiscovered reserves in the Colorado-Wyoming area.
9	А.	The Potential Gas Committee (PGC) is an independent source of undiscovered gas levels.
10		According to the PGC, "The objective of the Potential Gas Committee is to provide
11		estimates, based on expert knowledge, of the potential supply of natural gas, which,
12		together with estimates of proved reserves of natural gas, make possible an appraisal of
13		the nation's long-range gas supply." The PGC publishes its estimates biennially in its
14		report, Potential Supply of Natural Gas in the United States. They have prepared and
15		published estimates for over 30 years. This report provides the PGC's estimate of
16		undiscovered gas in existing fields, and from new field discoveries. The PGC's latest
17		report is as of December 31, 2000.

.

Exhibit No. S-10 Page 29 of 60 pages.

Trailblazer Pipeline Company	
Docket No. RP03-162-000	

1	Q.	How does the estimate from the independent source for the Colorado-Wyoming
2		supply area compare to your estimate?
3	А.	Comparisons between this estimate and my estimate are shown in Exhibit No. S-11,
4		Schedule No. 12, Page 1 of 2 pages.
5		As discussed earlier, my estimates of undiscovered reserves are calculated by
6		subtracting from my ultimate recovery level, the gas that has already been produced and
7		the gas that has already been discovered and categorized as remaining reserves. For the
8		Colorado-Wyoming supply area, my estimate of undiscovered reserves based on a 35-
9		year life, shows that it is below the PGC estimate. My estimate is 33,504 Bcf as of
10		December 31, 2001. The PGC estimate of undiscovered gas is 87,459 Bcf as of
11		December 31, 2000. Note that the PGC estimate is as of a year before my estimate.
12		Bringing the PGC estimate up to 2001 would not significantly change the difference
13		between its estimate and my estimate.
14		The PGC refers to its estimates as "potential resources", and states that its
15		estimates "represent potential natural gas resources expected that, in the judgment of its
16		members, can be recovered by future drilling under the conditions of:
17		1. adequate economic incentives in terms of price/cost relationships, and
18		2. current or foreseeable technology."
19		It also states that "No consideration is given whether or not this resource will be
20		developed; rather, the estimates are of resources that could be developed if the need and

Exhibit No. S-10 Page 30 of 60 pages.

Trailblazer Pipeline Company	Prepared Direct Testimony of Kevin J. Pewterbaugh
Docket No. RP03-162-000	Depreciation

1		economic incentive exist." (Potential Supply of Natural Gas in the United States, Report
2		of the Potential Gas Committee, December 31, 2000, page 187.)
3		I have used the term undiscovered reserves instead of undiscovered resources.
4		This term does not mean that undiscovered reserves have achieved the same level of
5		certainty as discovered or remaining reserves, but in the context of my depreciation
6		analysis, I consider undiscovered reserves, to the extent I use them, to be gas that will be
7		discovered and produced.
8	Q.	Mr. Pewterbaugh, what categories of the PGC's estimates did you use to compare
9		with your results?
10	A .	The PGC divides its estimates into three categories: probable, possible, and speculative.
11		Probable resources refers to undiscovered gas connected with known fields, possible
12		resources refers to undiscovered gas connected with known productive formations, and
13		speculative resources refers to undiscovered gas connected with formations that have not
14		yet proven to contain natural gas resources. A definition of these categories is given in
15		Exhibit No. S-11, Schedule No. 13. I have used the categories of probable and possible
16		in my comparison.
17		The PGC gives three estimates for each of the above categories: minimum,
18		maximum, and most likely. I have used the most likely estimate for comparing with my
19		estimate. The PGC states of the "most likely" category:

Trailblazer Pipeline Company

Docket No. RP03-162-000

Exhibit No. S-10 Page 31 of 60 pages.

Depreciation

Prepared Direct Testimony of Kevin J. Pewterbaugh

1		The most reasonable estimate of the existence of traps and
2		accumulations and the most reasonable assessment of source bed,
3		yield factor and reservoir conditions. The probability is highest
4		that these conditions prevail in the estimator's judgment and that
5		the estimated quantity of gas resources would be present. Such
6		conditions lead to the most likely estimate of the resource.
7		Potential Supply of Natural Gas in the United States, Report of the
8		Potential Gas Committee, December 31, 2000, page 192.
9		I will discuss the PGC further in my discussion of Trailblazer witness Harrell's
10		testimony.
11	Q.	Do you believe the PGC estimate should be the controlling estimate in determining
12		the supply life from the Colorado-Wyoming area?
13	А.	No, it is just one estimate, and is used as support for the reasonableness of my estimate.
14		Further, subsequent PGC estimates may be larger than the current estimate as more
15		exploration occurs, leading to the inclusion of undiscovered gas that was excluded in the
16		PGC's latest estimate. I believe that the PGC estimate will increase as the demand for
17		natural gas increases during the projected 35-year supply life for Trailblazer. The simple
18		scenario is that if a supply deficiency should occur, the result will be an impetus to
19		increase supply. This concept is supported by Standard & Poor's, Platt's in its report, U.S.
20		Energy Outlook, Fall/Winter 1999-2000. In this report, it states on page 69:
21		The forecast reflects the primacy of demand in driving natural gas
22		markets. Environmental policies that encourage the use of natural

2: markets. Environmental policies that encourage the use of natural 22 gas will inexorably lead to rising demand. And demand will likely 23 outpace domestic supply growth for at least the medium term. 24

Exhibit No. S-10 Page 32 of 60 pages.

Trailblazer Pipeline Company	Prepared Direct Testimony of Kevin J. Pewterbaugh
Transvense Tipenne Contra-1	Description
Docket No. RP03-162-000	Depreciation

1 2 3 4		Thus, prices will rise, and higher prices will bring new sources of <u>supply</u> In sum, both new technology and new sources should eventually achieve the requisite supply. (Emphasis by single-underline included, emphasis by double-underline added).
5	Q.	Would you summarize your findings with respect to the existence of undiscovered
6		reserves?
7	А.	Yes. In summary, historical annual new reserve discoveries show that significant upward
8		adjustments to the discovered reserve base are occurring regularly; a significant amount
9		of exploratory drilling is continuing to occur in Trailblazer's supply area; and an
10		independent source has estimated a significant amount of undiscovered gas remaining in
11		Trailblazer's supply area. These facts support the existence of as yet undiscovered or
12		unproven reserves and support my estimate of the supply life for Trailblazer's supply area.
13		While natural gas is a finite resource, there is still a significant amount estimated
14		to be discovered, and I believe there will be enough gas to keep Trailblazer operating for
15		at least the next 35 years.

16 (6) Discussing Demand and Competition, and Determining the Remaining Economic Life

17 Q. Why is demand considered in your analysis?

A. Factors other than supply can affect the remaining economic life of a pipeline. While if
there is no supply to transport, there is no business, it is also true that if there is no

٠

Trailblazer Pipeline Company Docket No. RP03-162-000 Exhibit No. S-10 Page 33 of 60 pages.

Prepared Direct Testimony of Kevin J. Pewterbaugh Depreciation

1	•	demand for the gas, there is likewise no business. A falling demand for gas could have a
2		negative effect upon the future life of a facility.
3	Q.	What are your findings regarding the effect of demand on the future life of
4		Trailblazer's facilities?
5	A .	I determined that demand will not have a negative effect on the supply life, and therefore,
6		on the remaining economic life of Trailblazer's facilities. DRI-WEFA, Inc., in its U.S.
7		Energy Outlook, Spring-Summer 2001, shows that it expects natural gas consumption to
8		grow, rather than fall, in the futurein the areas that include the destinations of
9		Trailblazer's throughput. In the East North Central Region, gas consumption is expected
10		to grow from 3,837 trillion Btu (TBtu) in 1999 to 5,278 TBtu in 2020; and nationally,
11		from 22,284 TBtu in 1999 to 32,498 TBtu in 2020 (Exhibit No. S-11, Schedule No. 14).
12		The EIA also projects national gas demand to grow in the future, from 24.07 quadrillion
13		Btu (QBtu) in 2000, to 35.81 QBtu in 2025 (Exhibit No. S-11, Schedule No. 15).
14		With demand projected to increase, it can be assumed that demand will not
15		negatively impact the remaining economic life of Trailblazer's facilities.
16	Q.	Will you discuss competition with respect to Trailblazer?
17	A .	Yes. I believe it is premature to shorten Trailblazer's remaining economic life for the
18		speculative effects of future competition. Competition is not synonymous with going out
19		of business. The Commission wants a competitive environment, the purpose of which is
20		to provide a natural check on transportation rates, not to drive a pipeline out of business.

Exhibit No. S-10 Page 34 of 60 pages.

Trailblazer Pipeline Company	
Docket No. RP03-162-000	

1		Also, according to the Company's response to Staff Data Request (KJP-1), Item
2		No. 17, which I have included as Exhibit No. S-11, Schedule No. 16, Trailblazer has 125
3		firm shipper contracts. These contracts have expiration dates ranging from 2003 to 2012,
4		all the way to 2053 for a winter only agreement with Concord Energy, L.L.C. Further,
5		thirteen of these contracts have been renewed in the past and may be renewed again when
6		the time comes. Firm contracts show the customer base and established service that are
7		advantages for Trailblazer over potential competitors.
8		Trailblazer also has an advantage over pipeline projects, if they are built. All
9		other things being equal, a project would be a more expensive was to transport gas
10		because the project would have to recover 100 percent of its investment; Trailblazer has
11		already recovered about 63 percent of its Existing Facilities and Expansion Facilities
12		transmission investment, meaning it only has about 37 percent of its investment left to
13		recover.
14	Q.	What do you conclude with respect to the remaining economic life of Trailblazer's
15		system?
16	Α.	I conclude that with the supply life I calculated, with the demand projections as given
17		above, and considering my discussion of competition, that supply life will not be
18		shortened by demand or competition, and therefore, the supply life will equal the
19		remaining economic life for Trailblazer's transmission facilities, which, as stated
20		previously, is 35 years.

Exhibit No. S-10 Page 35 of 60 pages.

Trailblazer Pipeline Company Docket No. RP03-162-000

1

Prepared Direct Testimony of Kevin J. Pewterbaugh Depreciation

(7) Adjusting the Remaining Economic Life for Interim Retirements

- What are interim retirements? 0. 2
- Interim retirements are those retirements which occur before the end of the remaining Α. 3 economic life and the exhaustion of supply. Some examples of occurrences that can 4 cause interim retirements include physical forces such as wear and tear, and action of the 5 elements, which could reduce the ability of some of the facilities to remain in service over 6 the entire remaining economic life of the facilities as a whole. 7
- In determining the depreciation rates for Trailblazer's transmission facilities, I 8
- used a remaining economic life of 35 years (from December 31, 2001) as the maximum 9
- life-span, and adjusted this remaining economic life for early (interim) retirements. 10
- Why did you account for interim retirements? 0. 11
- The depreciation rate is applied to the gross plant to determine the annual expense. If, Α. 12 over time, the gross plant is reduced because of interim retirements, the annual expense 13 will also be reduced. If interim retirements were not accounted for, the gross plant would 14 not be fully recovered at the end of its remaining economic life.
- 15
- How did you account for interim retirements? **Q**. 16

I accounted for interim retirements of Trailblazer's transmission facilities by the use of a Α. 17 statistical analysis of historical retirement patterns. Specifically, I employed Iowa-Type 18 Survivor Curves (Iowa curves). With an Iowa curve and an estimated average age of the 19

Exhibit No. S-10 Page 36 of 60 pages.

Trailblazer Pipeline Company	Prepared Direct Testimony of Kevin J. Pewterbaugh
Docket No. RP03-162-000	Depreciation
facilities, along with the remaining econom	ic life, I determined an average remaining life

1

2	(ARL) of all plant (both that which would be retired early and that which would not be
3	retired until the end of the remaining economic life). This ARL accounts for interim
4	retirements, and is naturally shorter than the remaining economic life of the facilities as a
5	whole of 35 years. It is the ARL-average remaining life, rather than the remaining
6	economic life of 35 years, that goes into the equation for calculating depreciation rates.
7	This is to compensate for interim retirements decreasing the gross plant to which the
8	depreciation rate is applied, so that the full investment will be recovered at the end of the
9	35-year period.

Q. Could you explain how Iowa curves are used in estimating the ARL of Trailblazer's facilities?

Iowa curves demonstrate the survivor characteristics of property from installation to 12 **A**. retirement of the last unit. They are used to project how property will be retired in the 13 future. The curves are defined by a survivor pattern and an average service life (ASL). 14 15 The survivor pattern can also be thought of as a retirement pattern as they are the inverse of each other. The ASL is the average of how long all the facilities of a group are 16 17 expected to last when they are new. The ARL is the average of how long the facilities of a group are expected to last when they are not new. The ASL, and the survivor/retirement 18 pattern uniquely identify the Iowa curve. From this curve, the ARL is determined. 19

Exhibit No. S-10 Page 37 of 60 pages.

Depreciation

Prepared Direct Testimony of Kevin J. Pewterbaugh

	Docket No. RP03-162-000 Depreciation
1	Exhibit No. S-11, Schedule No. 17, contains an explanation of Iowa curves as well as an
2	example of an Iowa curve.
3	The more retirement experience there is regarding a particular class of plant, the
4	more confidence one can have in the Iowa curve selection. However, when economic

considerations cause a concurrent retirement of all units, the curve selection becomes less 5 critical. This concurrent retirement results in the Iowa curve being truncated. This 6 truncation occurs at the end of the remaining economic life. As used above, an economic 7 consideration is one that causes retirement of the facility before it would be retired due to 8 non-economic factors such as wear-and-tear. For Trailblazer, I believe that a lack of 9 supply will end the life of the Company's facilities before non-economic factors would 10

force it to cease operations. 11

15

Trailblazer Pipeline Company

What accounts did you use to represent the transmission function? **O**. 12

Often, the interim retirement adjustment is done for the transmission function as a whole. Α. 13 For the Existing Facilities, I performed separate interim retirement adjustments on 14 Compressor Station Equipment (Account No. 368), and on all plant except Compressor

- Station Equipment to arrive at a composite adjustment for the transmission function. Of 16
- this other transmission plant, Mains (Account No. 367) and Rights-of-Way (Account No. 17
- 365)--which is directly associated with Mains--account for over 97 percent of 18
- Trailblazer's non-Compressor Station Equipment transmission investment, based on plant 19

Exhibit No. S-10 Page 38 of 60 pages.

Trailblazer Pipeline Company Pr	repared Direct Testimony of Kevin J. Pewterbaugh
Docket No. RP03-162-000	Depreciation

1		balances as of December 31, 2002. I used a curve commonly used for these accounts to
2		represent all of Trailblazer's non-Compressor Station Equipment transmission plant.
3	Q.	What Iowa curves did you use for Trailblazer's plant?
4	A .	I used an Iowa curve designated as 65 R2 for the Mains and Rights-of-Way accounts.
5		The number 65 refers to the ASL in years and the designation R2 refers to a particular
6		retirement pattern/curve. The 65 R2 curve is commonly used for transmission plant. I
7		used an Iowa curve designated as 30 R3 for the compressor station account of the
8		Existing Facilities and for the Expansion Facilities, which are compression station
9		equipment. This curve takes into account the shorter expected life-span of equipment in
10		this account as compared to the equipment in the Mains account.
11	Q.	What is the ARL that you calculated using the above Iowa curves?
12	A .	The ARL for a particular plant account is dependent on the age of the plant, as well as on
13		the Iowa curve selected. For the Existing Facilities, factoring in this information and
14		weighting the results arrives at an ARL of 30.1 years, as of December 31, 2002. This is
15		shown in Exhibit No. S-11, Schedule No. 18. Also in this schedule, I have included the
16		percent of plant surviving at truncation, which is 66.74 percent for the Existing Facilities
17		as of December 31, 2002. This is the amount of existing plant, predicted by the Iowa
18		curves, that will still be in service at the end of the remaining economic life of 35 years
19		from December 31, 2001, or as of the end of 2036, at the point where the Iowa curve is

Exhibit No. S-10 Page 39 of 60 pages.

Trailblazer Pipeline Company	Prepared Direct Testimony of Kevin J. Pewterbaugh
Docket No. RP03-162-000	Depreciation

1		truncated. The ARL and this latter information was given to Staff witness Taylor for his
2		use in determining the proper negative net salvage rate(s) for Trailblazer's facilities.
3	Q.	Did the Expansion Facilities have the same ARL as the Existing Facilities?
4	А.	No. The Expansion Facilities consist of compressor station equipment. Therefore, only
5		the 30 R3 Iowa curve was used, rather than both the 65 R2 and 30 R3 curves. Further,
6		the average age of the Expansion Facilities is quite a bit less than the average age of the
7		Existing Facilities. These factors led to an ARL for the Expansion Facilities of 28.1
8		years, and the percent surviving at truncation of 31.98 percent, both at December 31,
9		2002. These results are also shown on Exhibit No. S-11, Schedule No. 18.
10		To arrive at the ARL for the plant at March 31, 2003, which is the latest plant data
11		available to Staff at the time of this testimony, I conservatively subtracted 0.25 years to
12		account for the quarter year between my study date of December 31, 2002, and March 31,
13		2003. This can be seen by comparing the ARL's in Exhibit No. S-11, Schedule No. 18,
14		with the ARL's shown in Exhibit No. S-11, Schedule No. 19, which is a schedule of
15		factors in the depreciation calculation.

Exhibit No. S-10 Page 40 of 60 pages.

Trailblazer Pipeline Company Docket No. RP03-162-000

1

Prepared Direct Testimony of Kevin J. Pewterbaugh Depreciation

(8) Calculating the Depreciation Rates

2	Q.	How did you calculate the depreciation rate for Trailblazer's transmission facilities?
3	А.	The calculation of the depreciation rate is straightforward. It is calculated by dividing the
4		ARL into the percent of the gross plant left to be depreciated. The gross plant left to be
5		depreciated is also called the net plant. The net plant is the result of subtracting the
6		accrued depreciation from the gross plant. Accrued depreciation and gross plant data
7		were provided to me by Staff witness Segal. My depreciation calculation resulted in a
8		rate of 0.90 percent for the Existing Facilities, 3.40 percent for the Expansion Facilities,
9		and a rate of 1.25 percent should the Expansion Facilities be rolled into the Existing
10		Facilities. Factors in the depreciation rate calculation appear in Exhibit No. S-11,
11		Schedule No. 19. This schedule also shows the difference in annual expense amounts
12		from my proposed depreciation rate versus Trailblazer's proposed depreciation rates based
13		on the gross plant amounts provided by Staff witness Segal.

14 III. STAFF'S DEPRECIATION ANALYSIS FOR GENERAL PLANT

15

Q.

What depreciation rate is Trailblazer proposing for its general plant?

16 A. Trailblazer depreciates its general plant on a functional basis. Its existing rate is 3.60

17 percent; Trailblazer is proposing to increase this rate to 10.00 percent.

Exhibit No. S-10 Page 41 of 60 pages.

Trailblazer Pipeline Company	Prepared Direct Testimony of Kevin J. Pewterbaugh
Docket No. RP03-162-000	Depreciation

1	Q.	Do you agree with his recommendation with respect to General Plant?
2	А.	No, according to my analysis, his rate should be increased to 20.00 percent from his
3		recommended rate of 10.00 percent and the existing rate of 3.6 percent. This results in a
4		small increase in annual expense of about \$17,000 versus Mr. Simmons' proposed rate.
5	Q.	Upon what is your proposed general plant depreciation rate based?
6	A .	I used an average service life (ASL) approach to determine the depreciation rate. The
7		expected ASL's of the various types of plant in each account were combined on a
8		weighted average basis; that result was then used to calculate the depreciation rate.
9	Q.	What is the ASL approach and why did you choose this approach rather than the
10		ARL approach you used for calculating the transmission plant depreciation rate?
11	Α.	The depreciation rate in the ARL method is derived from the remaining economic life and
12		the percentage of the plant left to be recovered. In shorter-lived accounts, such as
13		Trailblazer's general plant accounts, plant is retired and replaced on an ongoing basis,
14		sometimes several times before the remaining economic life of the Company as a whole
15		is reached. Because of the relatively rapid turnover of plant in these accounts, the age of
16		the plant (and therefore, its expected remaining life) and the percent of the plant left to
17		recover (which shifts due to additions and retirements) can change dramatically from year
18		to year. This would lead a ARL-based depreciation rate to also change from year to year.
19		In contrast, the varying of the remaining lives and the percent of the plant left to
20		recover would not affect an ASL-based depreciation rate. The ASL method is often used

Exhibit No. S-10 Page 42 of 60 pages.

·

Trailblazer Pipeline Company	Prepared Direct Testimony of Kevin J. Pewterbaugh
Docket No. RP03-162-000	Depreciation

1		for continuing property accounts made up of shorter-lived assets. An ASL-based
2		depreciation rate is calculated from the ASL of the plant in question, regardless of the
3		estimated remaining life of the plant, and regardless of the percent of the plant left to
4		recover.
5	Q.	How did you determine the average service lives for the various general plant
6		accounts?
7	А.	In response to Staff Data Request (KJP-1), Item No. 4, included as Exhibit No. S-11,
8		Schedule No. 20, Trailblazer provided a brief description of items in these general plant
9		accounts. Based on this information, my experience, and average service lives used in
10		other proceedings, I determined an ASL for each account. From that point, I calculated a
11		weighted-average ASL, based on the gross plant balances as of December 31, 2002. The
12		depreciation rate falls out directly from the weighted-average ASL, namely 100 percent
13		divided by the weighted-average service life. This calculation results in a rate of 19.92
14		percent, which I rounded to 20.00 percent. The gross plant, ASL, and a list of plant items
15		by account are included in Exhibit No. S-11, Schedule No. 21. I have also included in
16		this schedule the weighted-average ASL and the depreciation rate.

Exhibit No. S-10 Page 43 of 60 pages.

Trailblazer Pipeline Company Docket No. RP03-162-000 Prepared Direct Testimony of Kevin J. Pewterbaugh Depreciation

1 IV. SUMMARY OF STAFF'S DEPRECIATION ANALYSIS

2 Q. Mr. Pewterbaugh, would you please summarize your testimony with respect to your 3 depreciation analysis?

Yes. I have provided analyses supporting a remaining economic life of 35 years from 4 Α. December 31, 2001, for Trailblazer's transmission plant. I have based my analysis of the 5 transmission facilities on the gas reserves, resources, and production from the Colorado-6 Wyoming area. I have also considered demand for natural gas and potential competition 7 in relation to this remaining economic life. I made an adjustment to account for interim 8 retirements, and based on my analyses, calculated a depreciation rate of 0.90 percent for 9 Trailblazer's Existing Facilities transmission plant, 3.40 percent for its Expansion 10 Facilities, and 1.25 percent should the Expansion Facilities be rolled in with the Existing 11 Facilities. 12 For general plant, I determined an ASL for each account, and derived a 13 depreciation rate of 20.00 percent based on that information. Finally, I accepted 14

15 Trailblazer's proposal for the amortization of its intangible account of 0.00 percent.

Exhibit No. S-10 Page 44 of 60 pages.

Trailblazer Pipeline Company Docket No. RP03-162-000

•

Prepared Direct Testimony of Kevin J. Pewterbaugh Depreciation

1 PART B--DISCUSSION OF THE TESTIMONY OF MR. SIMMONS

2	Q.	How does Trailblazer attempt to support its depreciation rate proposals?
3	A .	Trailblazer witness Geoffrey E. Simmons testifies to the depreciation calculations while
4		Trailblazer witness Ronald Harrell testifies to the gas supply underlying the depreciation
5		calculations.
6	Q.	Please summarize the testimony of Mr. Simmons.
7	А.	Mr. Simmons uses two approaches to support his changes in the transmission
8		depreciation rates from 3.60 percent to 2.90 percent for the Existing Facilities, and from
9		5.00 to 7.00 percent for the Expansion Facilities. The first approach is a Unit-Of-
10		Production (UOP) approach, which he terms as a Production Reserve Ratio analysis; the
11		second approach he calls an Average Remaining Life of Gas Supply Study. Let me state
12		that Mr. Simmons applies these two methods to the Eastern Rockies supply area and to
13		the Northern Rockies supply area, which is a larger area encompassing the Eastern
14		Rockies. His methodology is the same for each area. I have included examples using the
15		Eastern Rockies as illustrative of the problems I have found in his approach.
16	Q.	Do you agree with his methods or results?
17	Α.	No, I have found that his methods are incorrect and he has arrived at depreciation rates
18		that are too high.

Exhibit No. S-10 Page 45 of 60 pages.

Trailblazer Pipeline Company Docket No. RP03-162-000 Prepared Direct Testimony of Kevin J. Pewterbaugh Depreciation

1 Q. Would you proceed with your analysis of Mr. Simmons' Production Reserve Ratio

2 analysis?

Yes, there are two faults that I want to address with his approach. Let me first describe 3 Α. the UOP approach. The Commission has used either a straight-line approach or a UOP 4 approach in determining depreciation rates for interstate gas pipeline companies. The 5 straight-line approach allocates depreciation evenly over the life of the asset in terms of 6 the length of time the asset will be in service; the UOP approach allocates depreciation 7 8 evenly over the life of the asset in terms of the total units of throughput that the asset will 9 transport over its life. As I cited earlier from the Memphis decision, "In order to be 'just and adequate' a reserve life depreciation rate must be based upon the useful life of the 10 particular property involved." Using production and total reserves as proxies for annual 11 throughput on the pipeline and the total throughput over its remaining life (the useful life 12 in terms of throughput), Mr. Simmons did not divide the production in a given year by the 13 total amount of reserves that the pipeline will transport over its remaining life, rather, he 14 divided the production by only a portion of the total reserves. This results in a 15 depreciation rate that is higher than it should be, leading to current ratepayers paying 16 more than their share with respect to later ratepayers, in effect subsidizing the later 17 ratepayers. 18

Exhibit No. S-10 Page 46 of 60 pages.

Trailblazer Pipeline Company	Prepared Direct Testimony of Kevin J. Pewterbaugh
	Depreciation
Docket No. RP03-162-000	

1		Mr. Simmons only uses the remaining reserves, which he calls the Supply Base,
2		and the current year's reserve additions (Exhibit No. TPC-55, page 12, lines 17 through
3		20), rather than the total gas supply that he should have used.
4	Q.	Mr. Simmons used a 20-year period for deliveries in his depreciation calculation
5		(Exhibit No. TPC-55, page 11, lines 16 through 23). Do you agree with this time
6		period?
7	A .	No, a 20-year time period will not capture all of the future reserve additions if the
8		pipeline is expected to still be in service beyond that time, as my analysis shows. All of
9		the future gas that will be transported through the pipeline should be used in determining
10		a proper UOP depreciation rate. The Staff has estimated certain pipelines to be in service
11		beyond 20 years, and the Commission has approved remaining lives longer than 20 years,
12		for example, in Iroquois Gas Transmission System, L.P., 84 FERC ¶ 61,086 (1998), the
13		Commission approved a 35-year remaining life. Also supporting a 35-year remaining life
14		is the Commission's order in Enbridge Pipelines (KPC), 100 FERC ¶ 61,260 (2002).
15	Q.	Have you performed any calculations to show the effects of Mr. Simmons'
16		misapplication of the production reserve ratio?
17	А.	Yes. I have replicated his Exhibit No. TPC-56, Schedule Nos. B and C, which are the
18		tables upon which he calculates the depreciation rates for the Eastern Rockies area. In my
19		reworking of this schedule, I have changed only his treatment of reserves, I have not
20		changed the total reserves he uses to what the total reserves should actually be. With only

Exhibit No. S-10 Page 47 of 60 pages.

٠

Trailblazer Pipeline Company	Prepared Direct Testimony of Kevin J. Pewterbaugh
Docket No. RP03-162-000	Depreciation

1		that one change, dividing production by total supply, rather than by only an increment of
2	·	total supply, the average depreciation rate for the first six years changes from 3.06 percent
3		to 1.87 percent. This is a significant difference. This is shown in Exhibit No. S-11,
4		Schedule No. 22. The first two pages of this schedule show his original tables; the
5		second two pages show the results of making just that one change.
6	Q.	Mr. Simmons makes the statement that "Trailblazer along with potential future
7		shippers should not be burdened at this juncture to the benefit of existing shippers
8		by a <u>deflated</u> depreciation rate that might be set to encompass an <u>extended</u> time
9		period." (Exhibit No. TPC-55, page 12, lines 9 through 11) Would you comment on
10		this assertion? (Emphasis added)
11	А.	Yes. Dealing with shippers first, the purpose of the depreciation rate is to allocate the
12		recovery of investment in a fair manner to all generations of shippers. The reverse of Mr.
13		Simmons' statement must also be considered, namely, existing shippers should not be
14		burdened to the benefit of potential future shippers by an inflated depreciation rate that
15		might be set to encompass a shortened time period. In other words, if the present rate is
16		set too high, that would lead to Trailblazer's investment being recovered too quickly, with
17		the result that later ratepayers would in effect pay a rate that was subsidized by current
18		shippers. With respect to Trailblazer, if the investment is recovered too quickly, the
19		result is a rate base in the future that is lower than it should be. The purpose of
20		depreciation is to ensure the recovery of the pipeline's investment; it is not to hasten that

Exhibit No. S-10 Page 48 of 60 pages.

Trailblazer Pipeline Company
Docket No. RP03-162-000

Prepared Direct Testimony of Kevin J. Pewterbaugh _______ Depreciation

1		recovery for the company's cash flow needs. The question is not whether Trailblazer and
2		its customers will be burdened with costs in the future (see Exhibit No. TPC-55, page 17,
3		lines 4-8; page 18, lines 13 through 16)they should have a cost burden until the end of
4		the remaining life of the pipelinethe question is whether Trailblazer and its customers
5		will be unfairly burdened. If the inflated depreciation rate proposal of Trailblazer were to
6		be accepted, then the answer would be that current ratepayers would be unfairly burdened
7		with costs, while Trailblazer would in effect pre-collect some of its investment at the
8		expense of its future rate base. This scenario carried too far would result in the Company
9		having no rate base, and therefore no rate of return, while still being in business, and its
10		future shippers would bear no portion of the burden of the recovery of the pipeline's
11		investment.
	Q.	investment. If Mr. Simmons used a UOP approach in his depreciation calculation, why didn't
11	Q.	
11 12	Q. A.	If Mr. Simmons used a UOP approach in his depreciation calculation, why didn't
11 12 13		If Mr. Simmons used a UOP approach in his depreciation calculation, why didn't you use that approach as well?
11 12 13 14		If Mr. Simmons used a UOP approach in his depreciation calculation, why didn't you use that approach as well? Generally speaking, the Commission Staff has limited its application of the UOP method
11 12 13 14 15		If Mr. Simmons used a UOP approach in his depreciation calculation, why didn't you use that approach as well? Generally speaking, the Commission Staff has limited its application of the UOP method to the offshore area or to where the pipeline's supply is from a limited supply area, such as
11 12 13 14 15 16		If Mr. Simmons used a UOP approach in his depreciation calculation, why didn't you use that approach as well? Generally speaking, the Commission Staff has limited its application of the UOP method to the offshore area or to where the pipeline's supply is from a limited supply area, such as a specific field. The Eastern Rockies area is not considered a limited supply area in this
11 12 13 14 15 16 17		If Mr. Simmons used a UOP approach in his depreciation calculation, why didn't you use that approach as well? Generally speaking, the Commission Staff has limited its application of the UOP method to the offshore area or to where the pipeline's supply is from a limited supply area, such as a specific field. The Eastern Rockies area is not considered a limited supply area in this context.

Exhibit No. S-10 Page 49 of 60 pages.

Trailblazer Pipeline Company
Docket No. RP03-162-000

Prepared Direct Testimony of Kevin J. Pewterbaugh Depreciation

from Mr. Simmons' Exhibit No. TPC-56, the UOP method produces a different 1 depreciation rate each year. These results are then averaged over a certain number of 2 years (six years for the Existing Facilities in this case) to arrive at a single depreciation 3 rate to be applied to Trailblazer's plant over that time period. Once that time period is 4 over, even if nothing else changes about the Company, that rate would no longer be 5 appropriate--built as it was on an average of a few years rather than on the entire 6 remaining life of the Company. A review of the rate should be undertaken at that point. 7 This is in contrast to the straight-line method I used to derive the proper depreciation rate, 8 where if nothing else changes about the Company, the rate would still be appropriate. 9 And it would continue to be appropriate to the end of the remaining life of the Company. 10 Even if both a UOP-derived rate and a straight-line method-derived rate both started out 11 correct, the UOP-derived rate would cease to be correct once the period of time over 12 which it was averaged was over. 13 The automatic divergence over time of the UOP-derived rate from the correct 14

depreciation rate is a problem because there is no longer an automatic review process at the Commission. Even if a section 5 proceeding were initiated at the point where the average rate was no longer appropriate, because the rates would be prospective, it may be two years or more before this obsolete depreciation rate would be corrected. If this obsolete rate were allowed to continue long enough, the result would be the recovery of Trailblazer's investment before its remaining life was over, meaning Trailblazer would

Exhibit No. S-10 Page 50 of 60 pages.

Trailblazer Pipeline Company Docket No. RP03-162-000	Prepared Direct Testimony of Kevin J. Pewterbaugh Depreciation
continue operations without any t	rate base, and that future ratepayers at that time would

- 2 unfairly not be responsible for the recovery of any of the pipeline's capital investment;
- 3 rather, they will pay a rate subsidized by earlier ratepayers.

1

- In contrast, a depreciation rate calculation using the straight-line method would
 not have to be revisited just because a certain length of time had passed, because it is not
 based on averaging constantly changing rates over a specific number of years. Assuming
 there were no significant changes to Trailblazer's operations, the depreciation rate based
 on the straight-line approach would be applicable over the entire remaining life of the
 pipeline, while a UOP-derived rate would not.
- 10 Q. Mr. Simmons states that given certain uncertainties, his approach, of a higher
- present depreciation rate, "equitably allocates the depreciation burden between
 existing and future customers." (Exhibit No. TPC-55, page 19, lines 10 through 12)
 Do you agree?
- A. No, I do not agree. He states that "Trailblazer acts as an intermediary, with limited direct access to either production or markets" (Exhibit No. TPC-55, page 18, lines 20 and 21).
 He then concludes that "no such reserves can be expected to flow on Trailblazer absent renewed, extended or new transportation agreements" (Exhibit No. TPC-55, page 18, line 23 through page 19, line 1). Of course that is the case, but one should not infer that renewing transportation agreements is an impossible task--gas transmission is
 Trailblazer's business. Current ratepayers should not be penalized by having to bear a

Exhibit No. S-10 Page 51 of 60 pages.

		er Pipeline Company Prepared Direct Testimony of Kevin J. Pewterbaugh lo. RP03-162-000 Depreciation
1		disproportionate part of the recovery of Trailblazer's investment because Trailblazer is
2		involved in a competitive business.
3		Mr. Simmons mentions other factors discussed by Trailblazer witness Ronald L.
4		Brown (Exhibit No. TPC-55, page 19, lines 4 through 10). These factors are new projects
5		creating more competition for the Rocky Mountain supply, the Chicago market becoming
6		served by Alaska and other arctic sources, and the growth of gas consumption in the
7		Rocky Mountain area. However, as stated previously, competition is not synonymous
8		with going out of business. I believe it is too speculative to limit Trailblazer's remaining
9		life on these uncertainties, as Mr. Simmons calls them.
10	Q.	Would you now proceed with your analysis of Mr. Simmons' Average Remaining
11		Life of Gas Supply Study?
12	A.	Yes. To arrive at his estimate of Average Remaining Life, which I will designate as
13		ARL-prime to distinguish it from the Average Remaining Life as used earlier in my
14		analysis, Mr. Simmons weights the amount of the future deliveries by the number of years
15		that the gas will remain in the ground until it is delivered. Obviously, the number of
16		years he includes in his analysis is significant. For example, if he projected only five
17		years into the future, the ARL-prime as shown in Exhibit No. TPC-56, Schedule F, page 1
18		of 2, column 4, would be 2.47 years rather than the 8.84 years he shows, and the
19		depreciation rate would be correspondingly higher. He used 20 years in his analysis
20		which essentially guarantees an ARL-prime of less than 20 yearsand basically, because

Exhibit No. S-10 Page 52 of 60 pages.

		ar Pipeline Company Prepared Direct Testimony of Kevin J. Pewterbaugh o. RP03-162-000 Depreciation
1		it's an average, of something around ten years. From this one point alone, he will get a
2		shorter ARL-prime, and consequently, a larger depreciation rate.
3	Q.	How is Mr. Simmons' ARL approach different from the ARL approach you used?
4	А.	My ARL is determined from the entire remaining life of the pipeline, and from the
5		expected retirements to the gross plant over that time. In contrast, Mr. Simmons' ARL
6		(ARL-prime) is an average based on the pipeline's throughput. His approach is not the
7		same as the straight-line depreciation approach the Staff normally employs.
8	Q.	What is the significance of the fact that the Production Reserve Ratio rate and the
9	-	ARL rate he determined turned out to be similar?
10	A.	I do not believe any significance should be attached to Mr. Simmons' result. As I have
11		shown, his Production Reserve Ratio method was done incorrectly, and the ARL-Prime
12		approach is controlled by the number of years over which the average is taken.
13	Q.	Do you agree that interim retirements should be included in the depreciation
	v •	calculations?
14		
15	Α.	Yes, and I have included them as discussed earlier by my use of the Iowa curves.

Exhibit No. S-10 Page 53 of 60 pages.

Trailblazer Pipeline Company Docket No. RP03-162-000 Prepared Direct Testimony of Kevin J. Pewterbaugh Depreciation

1 PART C--DISCUSSION OF THE TESTIMONY OF MR. HARRELL

- 2 O. What were Mr. Harrell's responsibilities in this proceeding?
- A. Mr. Harrell supports the future supply of gas in Trailblazer's supply areas. He also makes
 certain assertions with which I disagree.
- 5

0.

Would you proceed with your analysis?

Yes, in Exhibit No. TPC-59, page 8, lines 1 through 8, he states that an Α. 6 extrapolation of area-wide data "cannot be relied upon as the basis of a projection of 7 production from developed reserves." This point, however, needs to examined in the 8 context of this proceeding, namely the determination of the proper depreciation rate for an 9 interstate natural gas transmission company. In this context, the entire supply of a broad 10 area is used as a proxy for the specific portion of that supply that will actually flow 11 through the pipeline, remembering that pipeline companies are no longer the owners of 12 the gas, just the transporters, so their gas supply is less specific and can change over time. 13 The goal is to determine the total supply available for a pipeline, not the economic 14 viability of a particular exploration project. This area-wide approach has been used in 15 numerous cases, and the Commission has recognized this approach, for example, in its 16 order in Trunkline Gas Company, Docket No. RP96-129-000, in which it stated, 17 The Commission's depreciation decisions are made in the context 18 of gas ratemaking proceedings. They consider the foreseeable 19 future of the pipeline and its supply areas and must be based on 20

Exhibit No. S-10 Page 54 of 60 pages.

Trailblazer Pipetine Company	Prepared Direct Testimony of Kevin J. Pewterbaugh
Docket No. RP03-162-000	Depreciation

long-term forecasts of supply over large areas. (90 FERC ¶ 61,017 (slip op. at 17)).

3 Q. Please continue.

1

2

A. Mr. Harrell states that "Any number of influences including drilling of additional wells,
recompletions of existing wells, varied declines in productivity, reservoir stimulation,
market fluctuations and other factors can affect the production rates from year to year in
an inconsistent and non-repeatable fashion" and that the "Production rate from a
representative group of wells will typically result in a decline trend that can be
extrapolated with a high level of confidence." (Exhibit No. TPC-59, page 8, lines 8
through 13).

With respect to Mr. Harrell's assertion that any number of influences can affect 11 production rates, these influences should be accounted for because they will impact the 12 supply available to the pipeline. Typically, there will be additional drilling in 13 Trailblazer's supply area, there will be recompletions, there will be market influences--I 14 expect market influences to lead to additional gas being added to the supply--these and 15 other factors should not be excluded. Not accounting for these factors could result in an 16 understated supply projection. My area-wide supply analysis includes the effect of these 17 factors by extrapolating historical data which contains them. Further, the effect of any 18 truly unusual data is mitigated by the least squares extrapolations I have used. 19

Exhibit No. S-10 Page 55 of 60 pages.

Trailblazer	Pipeline	Company
Docket No.	RP03-1	62-000

•

Prepared Direct Testimony of Kevin J. Pewterbaugh Depreciation

1		With respect to his statement that the "Production rate from a representative group
2		of wells will typically result in a decline trend that can be extrapolated with a high level
3		of confidence", one concern with using a purported representative group of wells is the
4		possibility that legitimate factors could be excluded from the group, resulting in an
5		understated extrapolation.
6		Contrary to Mr. Harrell's assertion, area-wide data can be used with confidence
7		and does provide reliable trends. Again, the goal is to determine the total supply
8		available for a pipeline, not the economic viability of a particular exploration project.
9	Q.	Mr. Harrell spends a good deal of time trying to support the idea that resource
10		values from the PGC need to be adjusted downward to account for risk? Do you
11		agree with his assertion?
12	А.	No. This issue has already been determined by the Commission in its order in Trunkline
13		Gas Company, Docket No. RP96-129-000, issued on January 12, 2000 (90 FERC
14		¶ 61,017).
15	Q.	Who was the Commission Staff's depreciation witness in the <u>Trunkline</u> proceeding?
16	А.	I was the Commission Staff's witness for depreciation in that proceeding.
17	Q.	In the <u>Trunkline</u> proceeding, how did you rebut the assertion that risk was not
18		accounted for?
19	А.	I showed that the PGC does adjust for the risk that gas may not be found in a particular
20		area, using quotes from its own documents; for example, according to the PGC's 1994

Exhibit No. S-10 Page 56 of 60 pages.

	Trailblazer Pipeline Company Docket No. RP03-162-000	Prepared Direct Testimony of Kevin J. Pewterbaugh
1	Report entitled, Pote	ential Supply of Natural Gas in the United States, Report of the
2	-	nittee (December 31, 1994) (PGC Report). On page 2 of this report
3	the PGC states:	
4 5 6	potential nat	es of the Potential Gas Committee (PGC) represent ural gas resources <u>expected to be recovered</u> by future er conditions of:
7 8	1.	adequate economic incentives in terms of price/cost relationships, and
9	2.	current or foreseeable technology.
10		(emphasis added)
11	The term "e	spected to be recovered" connotes that reserves expected not to be
12	recovered are not in	cluded. This was supported by Dr. Curtis, a Company witness, in
13	response to a Staff of	lata request in the Trunkline proceeding, wherein he stated that "The
14	PGC does not estim	ate 'unrecoverable resources'". Other statements from the PGC that
15	support my interpre	tation include:
16 17 18 19	estimates of	tteehas since that time prepared regular reports of the <u>recoverable natural gas that is believed</u> to exist in proved reserves. (page iii) (emphasis added)
20 21 22 23	gas that, in t	es of the Potential Gas Committee (PGC) are of natural he judgment of its members, <u>can be recovered by</u> <u>1 means</u> (page 3) (emphasis added)

Trailblazer Pipeline Company Docket No. RP03-162-000 Exhibit No. S-10 Page 57 of 60 pages.

Depreciation

Prepared Direct Testimony of Kevin J. Pewterbaugh

1	The basic technique for estimating potential gas resources is to
2	compare the factors that control known occurrences with factors
3	present in prospective areas. (page 7)
4	
5	the estimate of the potential gas supply is derived by(3)
6	discounting to allow for the probability that traps and/or
7	accumulations exist. (page 9)
8	(emphasis added)
9	Each estimator considers three separate situations in preparing
10	estimates:(2) The most reasonable estimate of the existence of
11	traps and accumulations (page 9)
12	(emphasis added)
13	The recoverable resource then is that part of the total resource that
14	is susceptible to discovery and production during the life of the
15	industry using current or foreseeable technology and under
16	favorable price/cost ratios. (page 5)
17	(emphasis added)
18	a minimum size of recoverable accumulation is determined on
19	the basis of the estimator's judgment of the current relationship
20	between the value of the resource and the costs of drilling and
21	production. (page 5)
22	(emphasis added)
23	Economic, technological and governmental policy factors taken
24	into account in the PGC's gas estimates are related to(2) all wells
25	that would be drilled in the future (page 10)
26	
27	These statements show that the PGC makes estimates of the natural gas it believes
28	is recoverable. The PGC does not include gas it deems unrecoverable. Also, the PGC
29	does not consider 100 percent of the favorable geologic characteristics as containing
30	recoverable gas. The PGC accounts for the possibility that some of the geologic locations

Exhibit No. S-10 Page 58 of 60 pages.

		zer Pipeline Company Prepared Direct Testimony of Kevin J. Pewterbaugh No. RP03-162-000 Depreciation
1		will not contain recoverable gas, as seen by the statements containing "discounting",
2		"probability", and "minimum size".
3	Q.	Has the PGC changed its analyses or views since the time that Dr. Curtis submitted
4		testimony in <u>Trunkline</u> ?
5	А.	No. Mr. Harrell spoke to Dr. Curtis subsequent to the Trunkline proceeding. According
6		to Mr. Harrell (in discussing Dr. Curtis' Trunkline testimony), Dr. Curtis "maintained that
7		the facts and opinions he expressed in his testimony are still valid." (Exhibit No. TPC-
8		59, page 18, lines 11 and 12).
9	Q.	You said that the Commission has ruled in the <u>Trunkline</u> proceeding. Will you
10		summarize the Commission's conclusions with respect to downgrading estimates to
11		account for risk?
12	А.	Yes. The <u>Trunkline</u> order states that:
13		The Commission finds that Trunkline misapprehends both the context in which the estimates are being used and the PGC
14 15		estimates themselves. The Commission's depreciation decisions
16		are made in the context of gas ratemaking proceedings. They
17		consider the foreseeable future of the pipeline and its supply areas
18		and must be based on long-term forecasts of supply over large
19		areas. They are based on the resources available within whole gas
20		supply provinces. The full universe of available supplies must be
21		considered in determining the remaining life of the pipeline as an
22		active operation and its corresponding depreciation rates.
23		While Trunkline's witnesses alluded to academic and industry
24		standards that they claimed required reductions of the PGC
25		estimates (e.g., Tr. at 482 and 486), they introduced very little of
26		such material and the little they produced does not support their

Exhibit No. S-10 Page 59 of 60 pages.

Trailblazer	Pipeline Company
Docket No.	RP03-162-000

.

Prepared Direct Testimony of Kevin J. Pewterbaugh Depreciation

1	position. Trunkline relies on a chapter of a textbook, R.E. Megill,
2	An Introduction to Exploration Economics, pp. 110-128 (2d
3	ed.)(Pennwell Books, Tulsa, Oklahoma). Examination of the
4	portion cited shows that the intended audience is persons or
5	companies evaluating exploratory investments, that is, exploratory
6	wells. This text applies to specific efforts by investors to drill for
7	gas in precise locations, or as the ALJ said, it applies where a
8	particular property is being evaluated. It does not address gas
9	ratemaking before a federal agency nor does it apply to the broad
10	areas under consideration in determining the pipeline's depreciation
11	rates. It is thus inapplicable here. (cite and footnotes omitted).
12	Trunkline also objects that the PGC estimates include gas that will
13	not be discovered and produced. But the Commission finds that
14	the PGC estimates Staff has used take these matters into account in
15	a manner sufficient for the purpose of determining depreciation
16	rates in this rate proceeding. (90 FERC ¶ 61,017 at 61,055-56).
17	The Commission concluded:
17 18	
	For the reasons discussed above, the Commission finds that, for
18	For the reasons discussed above, the Commission finds that, for gas ratemaking purposes, the PGC estimates adequately take into
18 19 20	For the reasons discussed above, the Commission finds that, for
18 19 20	For the reasons discussed above, the Commission finds that, for gas ratemaking purposes, the PGC estimates adequately take into consideration whether gas will be produced and limiting potential
18 19 20 21	For the reasons discussed above, the Commission finds that, for gas ratemaking purposes, the PGC estimates adequately take into consideration whether gas will be produced and limiting potential supplies to probable and possible PGC categories and, further, to
18 19 20 21 22	For the reasons discussed above, the Commission finds that, for gas ratemaking purposes, the PGC estimates adequately take into consideration whether gas will be produced and limiting potential supplies to probable and possible PGC categories and, further, to the most likely estimates for those categories, produces estimates
18 19 20 21 22 23 24	For the reasons discussed above, the Commission finds that, for gas ratemaking purposes, the PGC estimates adequately take into consideration whether gas will be produced and limiting potential supplies to probable and possible PGC categories and, further, to the most likely estimates for those categories, produces estimates of supplies that it is reasonable to expect will be discovered over
18 19 20 21 22 23 24	For the reasons discussed above, the Commission finds that, for gas ratemaking purposes, the PGC estimates adequately take into consideration whether gas will be produced and limiting potential supplies to probable and possible PGC categories and, further, to the most likely estimates for those categories, produces estimates of supplies that it is reasonable to expect will be discovered over the remaining life of the pipeline. The latter conclusion is
18 19 20 21 22 23 24 25 26	For the reasons discussed above, the Commission finds that, for gas ratemaking purposes, the PGC estimates adequately take into consideration whether gas will be produced and limiting potential supplies to probable and possible PGC categories and, further, to the most likely estimates for those categories, produces estimates of supplies that it is reasonable to expect will be discovered over the remaining life of the pipeline. The latter conclusion is bolstered by Staff's observation that the estimates may understate
18 19 20 21 22 23 24 25	For the reasons discussed above, the Commission finds that, for gas ratemaking purposes, the PGC estimates adequately take into consideration whether gas will be produced and limiting potential supplies to probable and possible PGC categories and, further, to the most likely estimates for those categories, produces estimates of supplies that it is reasonable to expect will be discovered over the remaining life of the pipeline. The latter conclusion is bolstered by Staff's observation that the estimates may understate resources and that the estimates of most likely probable and
18 19 20 21 22 23 24 25 26 27	For the reasons discussed above, the Commission finds that, for gas ratemaking purposes, the PGC estimates adequately take into consideration whether gas will be produced and limiting potential supplies to probable and possible PGC categories and, further, to the most likely estimates for those categories, produces estimates of supplies that it is reasonable to expect will be discovered over the remaining life of the pipeline. The latter conclusion is bolstered by Staff's observation that the estimates may understate resources and that the estimates of most likely probable and possible resources in Trunkline's supply areas have been

30 Q. What do you conclude about the testimony of Mr. Simmons and Mr. Harrell?

- 31 A. I conclude that Mr. Simmons' UOP and ARL methods are incorrect and that his
- 32 depreciation proposals should not be accepted. I conclude that Mr. Simmons used Mr.

Exhibit No. S-10 Page 60 of 60 pages.

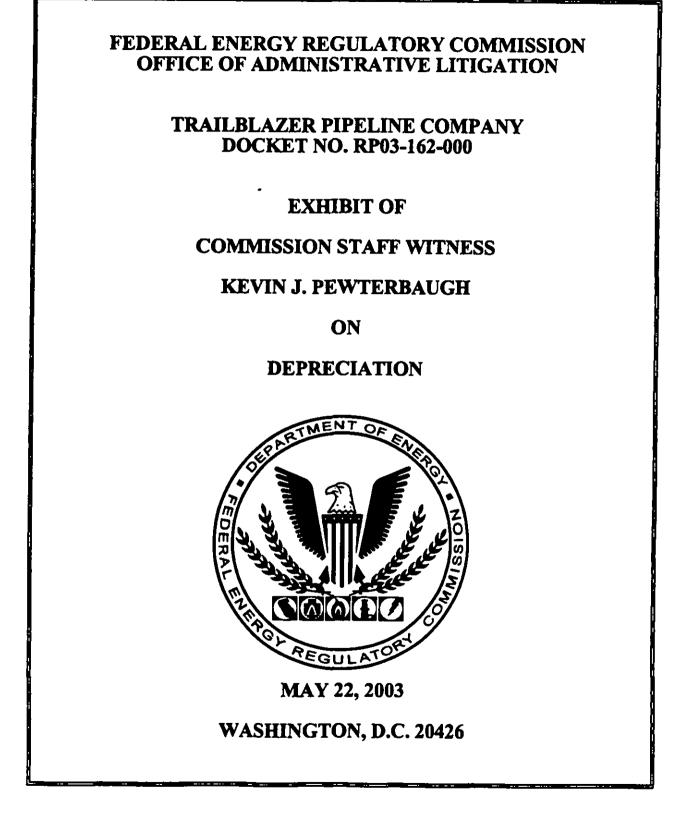
Trailblazer Pipeline Company Docket No. RP03-162-000	Prepared Direct Testimony of Kevin J. Pewterbaugh Depreciation
--	---

- 1 Harrell's data incorrectly, and further, that Mr. Harrell's assertion that gas supplies need to
- 2 be discounted to account for risk is inappropriate in the context of a gas pipeline rate
- 3 proceeding, as has already been determined by the Commission.
- 4 Q. Mr. Pewterbaugh, does this conclude your testimony?
- 5 A. Yes, it does.

.

UNITED STATES OF AMERICA **BEFORE THE** FEDERAL ENERGY REGULATORY COMMISSION

Trailblazer Pipeline Company) Docket No. RP03-162-000


I, Kevin J. Pewterbaugh, do hereby declare under penalty of perjury that I am the author of the foregoing testimony, that the facts set forth therein are true and correct to the best of my knowledge, and that if asked the questions contained in the text, I would give the answers contained in the testimony.

Kevin J. Penetahangh

.

<u> 5-スユーのふ</u> Date

EXHIBIT NO. S-11

.

.

•

Exhibit No. S-11

Table of Contents Page 1 of 2 pages.

Trailblazer Pipeline Company Docket No. RP03-162-000

Title	Schedule No.
Rate Case Proceedings in which Kevin J. Pewterbaugh Submitted Testimony	1
	(Pages 1 and 2 of 4 pages.)
Oil Company Depreciation Studies Performed by Kevin J. Pewterbaugh	
	(Pages 3 and 4 of 4 pages.)
Summary of Results	2
Map of System	
	(Page 1 of 2 pages.)
The Straight-Line Depreciation Formula	
	(Page 2 of 2 pages.)
Historical Annual Production and Remaining Reserve Data	
Historical Ultimate Recovery Data	6
Extrapolation of Ultimate Recovery, using an S-Curve Fit	(Pages 1 through 3 of 4 pages.)
Extrapolation of Ultimate Recovery, using an S-Curve Fit, Graph	(Page 4 of 4 pages.)
Extrapolation of Historical Production	(Pages 1 and 2 of 3 pages.)
Extrapolation of Historical Production, Graph	
Determination of Peak Year	9
Historical Additions to Reserves	
Exploratory Drilling in Company's Supply Area	

· ___

٠

.

Exhibit No. S-11

Table of Contents Page 2 of 2 pages.

Trailblazer Pipeline Company Docket No. RP03-162-000

Title	Schedule No.
Comparison of Staff's Estimates of	10
Undiscovered Gas to PGC Estimate	(Page 1 of 2 pages.)
Map of the PGC Resource Areas	
	(Page 2 of 2 pages.)
Description of PGC Resource Categories	
Outlook for Natural Gas Consumption, DRI-WEFA, Inc.	
Outlook for Natural Gas Consumption, U. S. Energy Information Administration	
Company Data Response to Staff Data Request (KJP-1), Item No. 17	
On the Use of Iowa Curves	Pages 1 and 2 of 3 pages.)
Example of an Iowa Curve	
Determination of Average Remaining Life and Percent Surviving at Truncation	
Factors in the Depreciation Calculation for Transmission Facilities	
Company Data Response to Staff Data Request (KJP-1), Item No. 4	
Calculation of Depreciation Rate for General Plant	
Correction of Mr. Simmons' UOP Calculation With Respect to His Treatment of Reserves	

Unofficial FERC-Generated PDF of 20030523-0176 Received by FERC 0SEC 05/22/2003 in Docket#: RP03-162-000

Exhibit No. S-11 Page 1 of 40 pages. Schedule No. 1, Page 1 of 3 pages.

Trailblazer Pipeline Company Docket No. RP03-162-000 Rate Case Proceedings in which Kevin J. Pewterbaugh Submitted Testimony

Company Docket No. Eastern Shore Natural Gas Company RP87-61-000 Chandeleur Pipe Line Company RP88-120-000 Chandeleur Pipe Line Company RP89-86-000 Kentucky West Virginia Gas Company RP86-52-000 and RP86-109-000 National Fuel Gas Supply Corporation RP89-49-000 Transcontinental Gas Pipe Line Corporation RP90-8-000 MIGC, Inc. RP90-86-000 Southern Natural Gas Company RP90-139-000, et al. Columbia Gulf Transmission Company RP90-107-000 Columbia Gulf Transmission Company RP91-160-000 **Tennessee Gas Pipeline Company** RP91-203-000 Southern Natural Gas Company RP92-134-000 Stingray Pipeline Company RP91-212-000 Tennessee Gas Pipeline Company RP91-203-000 and RP92-132-000 Southern Natural Gas Company RP93-15-000, et al. U-T Offshore System RP93-61-000 High Island Offshore System RP93-59-000 MIGC, Inc. RP93-89-000 CNG Transmission Corporation RP94-96-000 Northwest Pipeline Corporation RP94-220-000 ANR Pipeline Company RP94-43-000 Williams Natural Gas Company RP95-136-000 Northern Natural Gas Company RP95-185-000 Williston Basin Interstate Pipeline Company RP95-364-000 Northwest Pipeline Corporation RP95-409-000 Sea Robin Pipeline Company RP95-167-000 Trunkline Gas Company RP96-129-000 Columbia Gas Transmission Corporation RP95-408-000 Mississippi River Transmission Corporation RP96-199-000 Williams Natural Gas Company RP96-173, et al.

Unofficial FERC-Generated PDF of 20030523-0176 Received by FERC OSEC 05/22/2003 in Docket#: RP03-162-000

Exhibit No. S-11 Page 2 of 40 pages. Schedule No. 1, Page 2 of 3 pages.

Trailblazer Pipeline Company Docket No. RP03-162-000 Rate Case Proceedings in which Kevin J. Pewterbaugh Submitted Testimony

Company Docket No. Iroquois Gas Transmission System, L. P. RP97-126-000 Columbia Gulf Transmission Company RP97-52-000 Wyoming Interstate Company, Ltd. **RP97-375-000** Trailblazer Pipeline Company RP97-408-000 Equitrans, L.P. RP97-346-000 Exxon Company, U.S.A. v. Amerada Hess Pipeline Corporation, et al. OR96-14-000 Northern Natural Gas Company RP98-203-000 Northern Border Pipeline Company RP99-322-000 Kansas Pipeline Company RP99-485-000 Williston Basin Interstate Pipeline Company RP00-107-000 Big West Oil Co. v. Frontier Pipeline Co., et al. OR01-2-000, et al.) Chevron Products Co. v. Frontier Pipeline Co., et al. OR01-4-000, et al. (Consolidated) Big West Oil Co. v. Anschutz Ranch East Pipeline, Inc., et al. OR01-2-000, et al.) Chevron Products Co. v. Anschutz Ranch East Pipeline, Inc., et al. OR01-4-000, et al. (Consolidated) Portland Natural Gas Transmission System RP02-13-000

Unofficial FERC-Generated PDF of 20030523-0176 Received by FERC OSEC 05/22/2003 in Docket#: RP03-162-000

.

.

.

Exhibit No. S-11 Page 3 of 40 pages. Schedule No. 1, Page 3 of 3 pages.

Trailblazer Pipeline Company Docket No. RP03-162-000 Oil Company Depreciation Studies Performed by Kevin J. Pewterbaugh

Okie Pipe Line CompanyMay, 1982Tomahawk Pipe Line CompanyJuly, 1982Enterprise Products Company of MississippiMay, 1983Dorchester Liquids Transportation Corp.June, 1983Enterprise Petrochemical CompanyAugust, 1983Enterprise Pipeline CompanyOctober, 1983
Tomahawk Pipe Line CompanyJuly, 1982Enterprise Products Company of MississippiMay, 1983Dorchester Liquids Transportation Corp.June, 1983Enterprise Petrochemical CompanyAugust, 1983Enterprise Pipeline CompanyOctober, 1983
Enterprise Products Company of MississippiMay, 1983Dorchester Liquids Transportation Corp.June, 1983Enterprise Petrochemical CompanyAugust, 1983Enterprise Pipeline CompanyOctober, 1983
Dorchester Liquids Transportation Corp.June, 1983Enterprise Petrochemical CompanyAugust, 1983Enterprise Pipeline CompanyOctober, 1983
Enterprise Petrochemical CompanyAugust, 1983Enterprise Pipeline CompanyOctober, 1983
Enterprise Pipeline Company October, 1983
Enterprise Pipeline Company October, 1983
Seminole Pipeline Company January, 1984
Tomahawk Pipe Line Company February, 1984
Cities Service NGL Pipeline Company May, 1984
G & T Pipeline Company July, 1984
National Transit Company November, 1984
Sohio Pipe Line Company April, 1985
Collins Pipeline Company April, 1985
CKB Petroleum, Inc. July, 1985
Allegheny Pipeline Company July, 1985
Frontier Pipeline Company March, 1986
The Largo Company May, 1986
Mitco Pipeline Company June, 1986
Atlantic Pipeline Corporation July, 1986
Buccaneer Pipe Line Company July, 1986
Coastal Pipeline Company September, 1986
Owensboro-Ashland Company January, 1987
Seminole Pipeline Company October, 1987
Tecumseh Pipe Line Company October, 1987
Yellowstone Pipe Line Company October, 1987
Sonat Oil Transmission Inc. September, 1988
Pioneer Pipe Line Company March, 1988
Mid-Valley Pipeline Company June, 1989
Northern Rockies Pipe Line Company December, 1989
Olympic Pipe Line Company August, 1990
Black Lake Pipe Line Company August, 1991
Koch Pipelines, Inc. August, 1991

Unofficial FERC-Generated PDF of 20030523-0176 Received by FERC OSEC 05/22/2003 in Docket#: RP03-162-000

٠

•

Exhibit No. S-11 Page 4 of 40 pages. Schedule No. 2, Page 1 of 1 pages.

Trailblazer Pipeline Company Docket No. RP03-162-000 Summary of Results

	-	۵	Pepreciation Rat	es	Staff Percent
Function	Gross Plant (3/31/03)(\$)	Company Existing Rate (%)	Company Proposed <u>Rate</u> (%)	Staff Proposed <u>Rate</u> (%)	Surviving at Truncation (12/31/02) (%)
Existing Plant					
Intangible	90,746	33.30	0.00	0.00	
Transmission	283,200.082	3.60	2.90	0.90	66.74
General	174,377	3.60	10.00	20.00	
Expansion Plant					
Transmission	47,109,741	5.00	7.00	3.40	31.98
Existing and Expansion					
Transmission	330.309.823		3.48 (calculated by Staff)	1.25	61.78

Exhibit No. S-11 Page 5 of 40 pages. Schedule No. 3, Page 1 of 1 pages.

Trailblazer Pipeline Company Docket No. RP03-162-000 Map of System

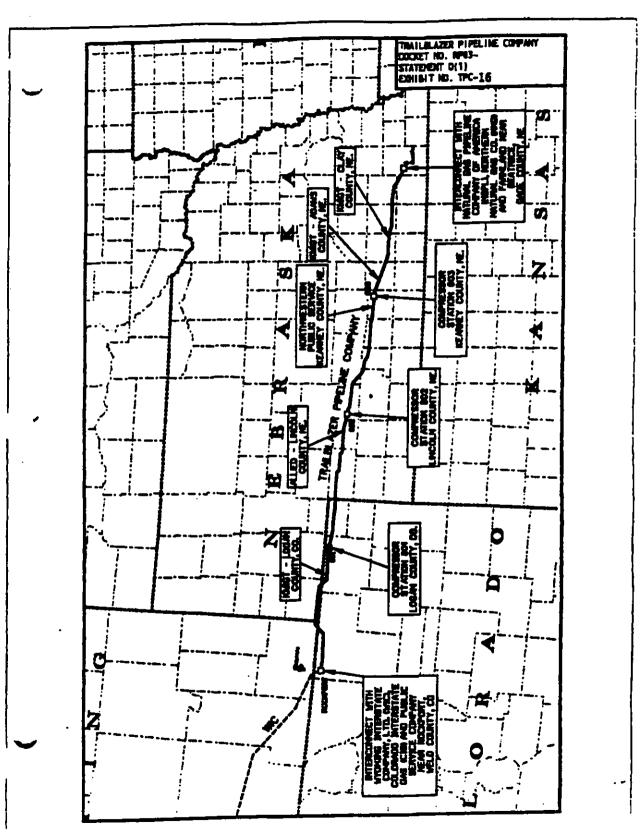


Exhibit No. S-11 Page 6 of 40 pages. Schedule No. 4, Page 1 of 1 pages.

Trailblazer Pipeline Company Docket No. RP03-162-000 The Straight-Line Depreciation Formula

The Depreciation formula is as follows:

 $DR = (DE \div GP) \times 100$, where

DR = Depreciation Rate

DE = Depreciation Expense, the amount to recover each year

GP = Gross Plant

The depreciation expense portion of the formula is derived as follows:

DE = NP + ARL, where

NP = Net Plant, the amount left to recover

ARL = Average Remaining Life

The net plant portion of the formula is derived as follows:

NP = GP - (+/-NS) - AD

GP = Gross Plant

NS = Net Salvage (which can be either positive or negative)

AD = Accrued Depreciation

An equivalent depreciation formula is:

 $DR = ((NP \div GP) \times 100) + ARL$, where

 $(NP \div GP) \ge 100 =$ percent of the gross plant left to be depreciated.

.....

Exhibit No. S-11 Page 7 of 40 pages. Schedule No. 5, Page 1 of 1 pages.

Trailblazer Pipiline Company Docket No. RP03-162-000 Historical Annual Production and Remaining Reserve Data (Dry Gas in Bcf) (Colorado, Wyoming)

Year	Production	Remaining Reserves
1977	489	8,817
1978	496	9,976
1979	511	10,134
1980	579	12,022
1981	588	12,268
1982	587	13,072
1 98 3	570	13,375
1984	655	13,425
1985	599	13,498
1986	590	12,783
1987	615	12,965
1988	698	13,843
1989	811	15,018
1990	812	14,499
1 99 1	92 1	15,708
1992	1,034	17,024
1993	1,100	17,655
1994	1,227	17 ,6 32
1 995	1,320	19,422
1996	1,322	20,030
1997	1,453	20,390
1 998	1,514	21,531
1999	1,932	23,213
2000	1,829	26,586
2001	2,168	30,925
	·	

Source: <u>U.S. Crude Qil, Natural Gas, and Natural Gas Liquids</u> <u>Reserves, Annual Report (1977-2001)</u>, Energy Information Administration.

.

Exhibit No. S-11 Page 8 of 40 pages. Schedule No. 6, Page 1 of 1 pages.

_ _

Trailblazer Pipiline Company Docket No. RP03-162-000 Historical Ultimate Recovery Data (Dry Gas in Bcf) (Colorado, Wyoming)

Year	Cumulative Production	Remaining Reserves	Ultimate Recovery
1 977	13,357	8,817	22,174
1 978	13,853	9,976	23,829
1979	14,364	10,134	24,498
1980	14, 9 43	12,022	26, 96 5
I 981	15,531	12,268	27,799
1982	16,118	13,072	29,190
1983	16,688	13,375	30,063
1 984	17,343	13,425	30,768
1985	17,942	13,498	31,440
1 986	18,532	12,783	31,315
1 98 7	19,147	12,965	32,112
1988	19,845	13,843	33,688
1 989	20,656	15,018	35,674
1990	21,468	14,499	35, 96 7
1991	22,389	15,708	38,097
1992	23,423	17,024	40,447
1993	24,523	17,655	42,178
1 994	25,750	17,632	43,382
1995	27,070	19,422	46,492
1996	28,392	20,030	48,422
1997	2 9,84 5	20,390	50,235
1998	31,359	21,531	52. 89 0
1999	33,291	23,213	56,504
2000	35,120	26,586	61 ,706
2001	37,288	30.925	68,213

Sources: <u>U.S. Crude Oil, Natural Gas, and Natural Gas Liguids</u> <u>Reserves, Annual Report (1977-2001)</u>, Energy Information Administration.

<u>U.S. Oil and Gas Reserves. By Year of Field Discovery</u>, Energy Information Administration, 1990.

.

•

•

•

• **---**•

Exhibit No. S-11 Page 9 of 40 pages. Schedule No. 7, Page 1 of 4 pages.

Trailblazer Pipeline Company Docket No. RP03-162-000 Corrected--Extrapolation of Ultimate Recovery using an S-Curve Fit Inflection Point equals 2001 (Culurada, Wyumang)

							Est Ultima	ie Racovary	115.000	R ³ =	0 95005		
Change in	2	for graph			Change in		• Actual	Estimated					
Estimated	Estimated		Ult. Rec.	Ult. Rec.	Actual		Ult. Rec.	Ult. Rec.			Ln(1/Y-1)		
UIL Rec.	Ult. Rec.	Year_	Actual	Estimated	L'It. Rec.	Year	Percent	Percent	x	X	<u> </u>	_ ^ب ر	<u> </u>
45.97	708 754	1920 1921		708 754		1920 1921	0.00 0.00	0.006	-56	3,136.00			
48.93	\$03	1921		#03		1921	0.00	0.007 0.007	-55 -54	3,025.00 2,916.00			
52.08	\$55	1923		855		1923	0.00	0.007	-53	2,809.00			
55.43	010	1924		910		1924	0.00	0.008	-52	2,704.00			
59.00	969	1925		969		1925	0 00	0.006	-51	2,601.00			
62.79	1,032	1926		1,032		1926	0.00	0.009	-50	2,500.00			
66.81	1,099	1927		1,099		1927	0.00	0.010	-49	2,401 00			
71.09	1,170	1928		1,170		1928	0.00	0.010	-48	2,304.00			
75.64	1,246	1929		1,246		1929	0.00	0.011	-47	2.209.00			
80.47	1,326	1930		1,326		1930	0.00	0.012	-46	2,116.00			
85.6L 91.06	1,412 1,503	1931 1932		1,412 1,503		193 t 1932	0.00 0.00	0.012 0.013	-45 -44	2,025.00 1,936.00			
96.85	1,600	1933		1,600		1933	0.00	0.014	-43	1,849.00			
103.00	1,703	1934		1,703		1934	0.00	0.015	-42	1,764.00			
109.53	1,812	1935		1,812		1935	0.00	0.016	-41	1,681.00			
116.45	1,929	1936		1,929		1936	0.00	0.017	-40	1,600.00			
123.80	2,053	1937		2,053		1937	0.00	0.016	-39	1,521.00			
131.59	2,184	1938		2,184		1938	0.00	0.019	-38	1,444.00			
139.85	2,324	1939		2,324		1939	0.00	0.020	-37	1,369.00			
148.61	2,473	1940		2,473		1940	0.00	0.022	-36	1,296 00			
157.89	2,631	1941		2,631		1941	0.00	0.023	-35	1,225.00			
167.72 178.13	2,798 2,976	1942 1943		2,798 2,976		1942 1943	0.00 0.00	0.024	-34	1,156.00			
189.15	3,166	1944		3,166		1943	0.00	0.026	-33 -32	1,089 00 1,024.00			
200.81	3,366	1945		3,366		1945	0.00	0.029	-31	961.00			
213.14	3,579	1946		3,579		1946	0.00	0.031	-30	900.00			
226.18	3,806	1947		3,806		1947	0.00	0.033	-29	\$41.00			
239.95	4,046	1948		4,046		1948	0.00	0.035	-24	784.00			
254.50	4,300	1949		4,300		1949	0.00	0.037	-27	729.00			
269.85	4,570	1950		4,570		1950	0.00	0 040	-26	676.00			
256.04	4,856	1951		4,856		1951	0.00	0.042	-25	625.00			
303.11	5,159	1952		5,159		1952	0.00	0.045	-24	576.00			
321.0E 340.01	5,480 5,820	1953 1954		5.480 5.820		1953 1954	0.00	0.048 0.051	-23 -22	529.00 484.00			
359.91	6,180	1955		6,180		1955	0.00	0.054	- <u></u> -21	441.00			
380.83	6,561	1956		6,561		1956	0.00	0.057	-20	400.00			
402.80	6,964	1957		6,964		1957	0.00	0.061	- 19	361.00			
425 84	7,390	1958		7,390		1958	0.00	0 064	-18	324.00			
449.99	7,840	1959		7,840		1959	0 00	0.068	-17	289 00			
475 28	8.315	1960		8,315		1960	0.00	0 072	-16	256-00			
501 72	8,817	1961		8.817		196 L	0.00	0 077	-15	225 00			
529.34	9,346	1962		9.346		1962	0.00	0.081	-14	196.00			
558.16	9,904	1963		9,904		1963	0.00	0 086	-13	169 00			
588.18 619.42	10,492	1964		10,492		1964	0.00 0.00	0.091	-12	144.00			
	11,112	1965		11,112		1965		0.097	-11	121.00			
651.87 685.53	11,764 12,449	1966 1967		11,764 12,449		1966	0.00	0.102 0.108	-10 -9	100.00 \$1.00			
720.39	13,169	1968		13,169		1968	0.00	0.115	-4	64.00			
756.41	13.926	1969		13,926		1969	0.00	0 121	.7	49.00			
793.58	14,719	1970		14,719		1970	0.00	0.128	-6	36.00			
831 85	15.551	1971		15,551		1971	0.00	0.135	-5	25 00			
871 16	16,422	1972		16.422		1972	0 00	0 143	-4	16.00			
911-45	17,334	1973		17,334		1973	0.00	0.151	-3	9.00			
952.65	18,287	1974		18,287		1974	0.00	0.159	-2	4.00			

. ...**...**

Est. Ultimate Recovery 115,000 R² = 0,95005

•

.

Exhibit No. S-11 Page 10 of 40 pages. Schedule No. 7, Page 2 of 4 pages.

Trailblazer Pipeline Company Docket No. RP03-162-000 Corrected-Extrapolation of Ultimate Recovery using an S-Cerve Fit Inflection Point equals 2001 (Colorada, Wyamray)

								,					
		for graph											
Change in					Change in		Actual	Estimated					
Estimated	Estimated		Ult. Rec.	Ult. Rec.	Attual		UR. Rec.	Ult. Rec.			Ln(1/Y-1)		
Ult. Rec.	Uit. Rec.	Year	Actual	Encounted	Ult. Rec.	Yew	Percent	Percent	<u>x</u>	X	Y	Y	X•Y
994.67	19,281	1975		19,281		1975	0.00	0.168	-1	1.00			
1,037.41	20,319	1976		20,319		1976	0.00	0 177	Ó	0.00			
1,080.75	21,399	1977	22,174	21,399		1977	0.19	0.186		1 00	1.432	2.050	1 432
1,124.56	22.524	1978	23,829	22,524	1,655	1978	0.21	0.196	2	4 00	1.342	1.801	2.684
1,168.70	23,693	1979	24,498	23,693	669	1979	0.21	0.206	3	9.00	1.307	1.708	3.920
1,213.01	24,906	1960	26,965	24,906	2,467	1960	0.23	0.217	4	t6.00	L.183	1.400	4.733
1,257.31	26,163	1961	27,799	26,163	834	1961	0,24	0.228	5	25.00	1.143	1.307	5 716
1,301.44	27,464	1982	29,190	27,464	1,391	1982	0.25	0.239	6	36.00	1.078	1 163	6 470
1,345.18	28,810	1983	30,063	28,810	\$73	1963	0.26	0.251	7	49.00	1.039	1.079	7.270
1,368.34	30,196	1984	30,768	30,198	705	1984	0.27	0.263	1	64.00	1.007	1.014	8 057
1,430 69	31,629	1985	31,440	31,629	672	1985	0.27	0 275	9	\$1.00	0 977	0.955	2 797
1,472.01	33,101	1966	31,315	33,101	(125)	1966	0.27	0.288	10	100.00	0.983	0.966	9 830
1,512.08	34.613	1967	32,112	34,613	797	1987	0.28	0.301	11	121.00	0 948	0 899	10 431
1,550.65	36,163	1968	33,688	36,163	1,576	1988	0.29	0.314	12	144.00	0.881	0.776	10 574
1.587.50	37,751	1989	35.674	37,751	1,986	1989	0.31	0.328	13	169.00	0.799	0.639	10 389
1,622.38	39,373	1990	35,967	39,373	293	1990	0.31	0.342	14	196.00	0 787	0.620	11.022
1,655.08	41,025	1991	38,097	41,028	2,130	1991	0.33	0.357	15	225.00	0.702	0.493	10.536
1,685.35	42,714	1992	40,447	42,714	2,350	1992	0.35	0.371	16	256 00	0.612	0 374	9 784
1,713.01	44,427	1993	42,178	44,427	1,731	1993	037	0.386	17	289-00	0.546	0.298	9 284
1,737 83	46,165	1994	43.382	46,165	1,204	[994	0.38	0 401	18	324.00	0.501	0.251	9 024
1,759.65	47,924	1995	46,492	47,924	3,110	1995	0.40	0.417	19	361.00	0.388	0.150	7 366
1,778.29	49,702	1996	48,422	49,702	1,930	1996	0.42	0.432	20	400 00	0.318	0.101	6.369
1,793.62	51,496	1997	50,235	51,496	1,813	1997	0.44	0.448	21	441.00	0.254	0.065	5.335
1,805.5T	\$3,302	1996	52,890	53,302	2,655	1998	0.46	0.463	22	484.00	0.161	0 026	3.535
1,813.87	55,115	1999	56,504	55,115	3,614	1999	0.49	0.479	23	529.00	0.035	0.001	0 797
1,818.64	56,934	2000	61,706	56,934	5,202	2000	0.54	0 495	24	576.00	(0.147)	0.021	(3 517)
L .81 9.77	58,754	2001	68,213	58,754	6,507	2001	0 59	0.511	25	625.00	(0 377)	0.142	(9.425)
1,817.26	60,571	2002		60,571		2002		0.527	325	5,525.00	17.901	18.301	150 414
1,811,13	62,382	2003		62,382		2003		0.542					
1,801-42	64,184	2004		64.184		2004		0.558	B -	(0.06)			
1,788.22	65,972	2005		45,972		2005		0.574	A *	1.53898			
1,771.62	67,744	2006		67,744		2006		0.589	R ¹ +	0 95005			
1,751.76	69,495	2007		69,495		2007		0.604					
1,728.79	71,224	2006		71,224		2008		0.619 0.634					
1,702.87	72,927	2009		72,927		2010		0.649					
1,674.20	74.601	2010		74,601		2010		0.663					
1,642.99	76,244	2011		76,244 77,854		2012		0.603					
1,609.44	77,854 79,427	2012 2013		79,427		2012		0.691					
1,573 79				19,427		2013		0.091					
1,536.26	80,964	2014				2015		0.717					
1,497.09	82,461	2015		82,461 83,917		2015		0.717					
1,456.52	83,917	2016 2017		85,332		2010		0.742					
1,414.78	\$5.332	-				2018		0.741					
1,372.10	\$6,704	2018 2019		\$6,704 \$8,033		2019		0,766					
1,328 70	55 ,033	2019		89,318		2020		0.777					
1,284.79	89,318	2020		90,558		2021		0.787					
1,240.57	90,558 91,754	2021		90,358 91,754		2022		0 798					
1,196.24	91,754	2023		91,734		2023		0.506					
1,151.98	94,014	2024		94,014		2024		0.818					
1,107 95 1,064.30	95,079	2025		95,079		2025		0 227					
1.004.30	95,079 96,100	2025		95,079 96,100		2026		0 836					
978.70	97,079	2025		97,079		2027		0.844					
936.97	96.016	2027		98.016		2028		0.852					
896.10	98,912	2029		98,912		2029		0.860					

- ---

.

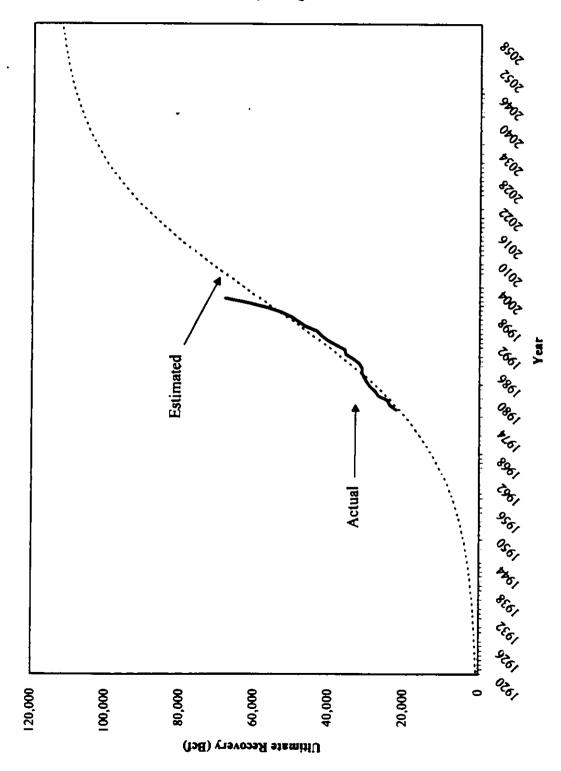
.

.

Exhibit No. S-11 Page 11 of 40 pages. Schedule No. 7, Page 3 of 4 pages.

•

R² = 0.95005


Trailblazer Pipeline Company Docket No. RP03-162-000 Corrected—Extrapolation of Ultimate Recovery using an S-Carve Fit Inflaction Point equals 2001 (Cultorado, Wyumng)

Est. Ultimate Recovery 115,000

		for graph											
Change in		-			Change in		Actual	Estimated					
Estimated			Ult. Rec.	UK Rec.	Actual		UIL Rec.	Uh. Rec.			La(1/Y-1)		
UK Rec.	Ult. Rec	Year	Actual	Estimated	Ult. Rec.	Year	Percent	Percent	<u>N</u>	<u>X</u>	<u> </u>	Y3.	<u> </u>
856.17	99,768	2030		99,768		2030		0.868					
\$17.25	100.585	2031		100,585		2031		0.875					
779.40	101,364	2032		101,364		2032		0.881					
742.66	102,107	2011		102,107		2033		0.885					
707.07	102,814	2034		102,814		2034		0,894					
672.67	103,487	2035		103,487		2035		0.900					
639.46	104,126	2036		104,126		2036		0.905					
607.47	104,734	2037		104,734		2037		0 91 1					
\$76.69	105,310	2038		105,310		2038		0.916					
547.12	105.858	2039		105,858		2039		0 921					
518.76	106,376	2040		106,376		2040		0.925					
491.58	106,868	2041		106,868		2041		0.929					
465 58	107,333	2042		107,333		2042		0.933					
440.73	107,774	2043		107,774		2043		0.937					
417.00	106,191	2044		108,191		2044		0.941					
394.37	105,556	2045		108,586		2045		0.944					
372.80	106,958	2046		108,958		2046		0.947					
352.27	109,311	2047		109,311		2047		0 951					
332.74	109,643	2048		109,643		2048		0.953					
314.18	109,958	2049		109,958		2049		0.956					
296.55	110,254	2050		110,254		2050		0.959					
279.82	110,534	2051		110,534		2051		0.961					
263.95	110,798	2052		110,798		2052		0.963					
248.90	111,047	2053		111,047		2053		0.966					
234.66	111,281	2054		111,281		2054		0.968					
221.17	111.503	2055		111,503		2055		0.970					
205 40	111.711	2056		111,711		2056		0.971					
196.33	L11,907	2057		111,907		2057		0.973					
154.91	112,092	2058		112.092		2058		0.975					
174.13	112,266	2059		112,266		2059		0.976					
163.94	112,430	2060		112,430		2060		0 978					
	112,585	2061		112.585		2061		0.979					
	112,730	2062		112,730		2062		0.960					
	112,867	2063		112,667		2063		0.981					
	112.995	2064		F12,995		2064		0 983					
	113,116	2065		113,116		2065		0 984					

Exhibit No. S-11 Page 12 of 40 pages. Schedule No. 7, Page 4 of 4 pages.

Trailblazer Pipeline Company Docket No. RP03-162-000 Extrapolation of Ultimate Recovery Colorado, Wyoming

.

.

.

Exhibit No. S-11 Page 13 of 40 pages. Schedule No. 8, Page 1 of 3 pages.

Trailblazer Pipiline Company Docket No. RP03-162-000 Extrapolation of Historical Production (for Ultimate Recovery = 115.000 Bcf) (Colorado: Wysoning)

-

$R^2 = 0.88219$

. ___

PEAK YEAR= 2016

Cumulative		Actual	Estimated	(X-PY) ²		Ln(Y)		
Production	Year		Production	x	X ²	Y	Y ²	X•Y
	1 977	489	387	1,521	2,313,441	6.192	38.345	9,418.583
	1978	496	421	1,444	2.085,136	6.207	38.522	8,962.296
	1979	511	458	1,369	1,874,161	6.236	38.892	8.537.590
	1980	579	496	1,296	1.679.616	6.361	40.466	8.244.248
	1981	588	536	1,225	1,500.625	6.377	40.663	7,811.491
	1982	587	579	1,156	1.336.336	6.375	40.641	7,369.529
	1 983	570	623	1,089	1,185,921	6.346	40.267	6.910.398
	1984	655	669	1.024	1,048,576	6.485	42.050	6.640.266
	1985	599	717	96 1	923,521	6.395	40.899	6.145.846
	1986	590	767	900	810,000	6.380	40.706	5,742.110
	1987	615	819	84 1	707,281	6.422	41.237	5.400.584
	1988	698	872	784	614.656	6.548	42.879	5,133.804
	1989	811	926	729	531,441	6.698	44.867	4 .88 3.037
	1990	812	982	676	456,976	6.700	44.883	4,528.862
	1991	921	1,038	625	390.625	6.825	46.587	4,265.913
	1 992	1,034	1,096	576	331,776	6.94 1	48.180	3. 998 .125
	1993	1,100	1.154	529	279.841	7.003	49.043	3,704.622
	1994	1,227	1,213	484	234,256	7.112	50.585	3.442.366
	1995	1,320	1.271	441	194.481	7.185	51.630	3.168.756
	1996	1.322	1.330	400	160,000	7.187	51.652	2,874.760
	1997	1,453	I .388	361	130.321	7.281	53.019	2.628.580
	1998	1,514	1,446	324	104,976	7.323	53.619	2.372.493
	1999	1.932	1,503	289	83.521	7.566	57.249	2,186.664
	2000	1.829	1,558	256	65.536	7.512	56.423	1.922.950
37. 288	2001	2,168	1,613	225	50,625	7. 682	59.006	1.728.351
38.953	2002		1.665	19.525	19.093,645	169	1.152	128.022
40,668	2003		1,715					
42,430	2004		1.763	B =	(0.00110)			
44,239	2005		1,808	A =	7.63321			
46.089	2006		1.850	$R^{2} =$	0.88219			
47.978	2007		1.889					
49,904	2008		1.925					
51,861	2009		1.957					
53.846	2010		1.985					
55.856	2011		2.010					
57.885	2012		2.030					
59.931	2013		2,045					
61.987	2014		2.057					

.

.

Exhibit No. S-11 Page 14 of 40 pages. Schedule No. 8, Page 2 of 3 pages.

Trailblazer Pipiline Company Docket No. RP03-162-000 Extrapolation of Historical Production (for Ultimate Recovery = 115.000 Bcf) *Colorado*. Bicamage

.

$R^2 = 0.88219$

PEAK YEAR= 2016

Cumulative		Actual Estimated	(X-PY) ²		Ln(Y)		
Production	Year	Production Production	<u>x</u>	X²	<u>Y</u>	Y ²	X•Y
64.051	2015	2.063					
66,116	2016	2,066					
68.180	2017	2.063					
70.236	2018	2.057					
72,282	2019	2,045					
74,311	2020	2,030					
76.321	2021	2.010					
78,306	2022	1,985					
80.263	2023	1.957					
82,189	2024	1.925					
84.078	2025	1.889					
85.928	2026	1,850					
87.737	2027	1,808					
89,499	2028	1.763					
91.214	2029	1.715					
92.879	2030	1,665					
94,492	2031	1.613					
96.050	2032	1,558					
97,553	2033	1,503					
98.999	2034	1.446					
100,387	2035	1,388					
101.717	2036	1.330					
102.989	2037	1.271					
104.201	2038	1.213					
105.355	2039	1,154					
106.451	2040	1,096					
107.489	2041	1.038					
108,471	2042	982					
109.397	2043	926					
110.268	2044	872					
111.087	2045	819					
111.854	2046	767					
112.571	2047	717					
113.240	2048	669					
113.863	2049	623					
114,442	2050	579					
114,978	2051	536					
115.475	2052	496					

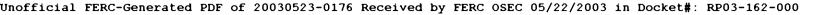
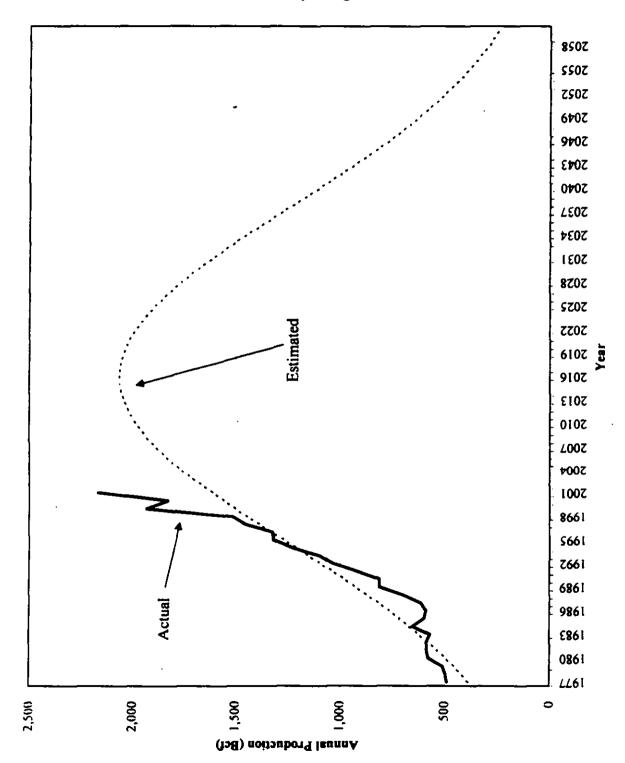



Exhibit No. S-11 Page 15 of 40 pages. Schedule No. 8, Page 3 of 3 pages.

Trailblazer Pipeline Company Docket No. RP03-162-000 Extrapolation of Production

Colorado, Wyoming

. _ _

•

.

Exhibit No. S-11 Page 16 of 40 pages. Schedule No. 9, Page 1 of 2 pages.

Trailblazer Pipiline Company Docket No. RP03-162-000 Determination of Peak Year (Dry Gas in Bcf) Colorado, Wyoming

		Cumulative Production								
	Estimated *	Pk. Yr.	Pk. Yr.	Pk. Yr.	Pk. Yr.	Pk. Yr.				
Year	Ult. Rec.	2014	2015	2016	2017	2025				
1995	47.924									
1996	49,702									
1997	51,496									
1998	53,302									
1999	55,115									
2000	56,934									
2001	58,754	37,288	37,288	37,288	37,288	37,288				
2002	60,571	38,931	38.942	38,953	38.962	39,022				
2003	62,382	40.620	40.644	40,668	40,689	40,822				
2004	64,184	42,351	42,392	42,430	42.467	42,688				
2005	65.972	44,121	44,182	44,239	44,292	44,620				
2006	67,744	45,927	46,011	46,089	46,162	46,615				
2007	69.495	47,766	47.876	47,978	48.075	48,673				
2008	71,224	49.634	49,773	49,904	50,026	50.792				
2009	72.927	51,525	51. 69 8	51,861	52,014	52.970				
2010	74,601	53,437	53,648	53,846	54,033	55,206				
2011	76,244	55,365	55,618	55,856	56,080	57,496				
2012	77,854	57,305	57.604	57,885	58,151	59.839				
2013	79.427	59,251	59,601	59,931	60.243	62,231				
2014	80,964	61,200	61.604	61,987	62.350	64, 66 9				
2015	82,461	63,146	63.611	64,051	64,468	67,151				
2016	83.917	65,085	65,614	66,116	66,593	69,673				
2017	85,332	67.013	67,611	68,189	68,720	72.230				
2018	86,704	68,925	69,597	70,236	70,845	74,820				
2019	88,033	70 .8 17	71.567	72,282	72,963	77,438				
2020	89,318	72,684	73,517	74,311	75,070	80.080				
2021	90.558	74,523	75,442	76,321	77,161	82,743				
2022	91,754	76,329	77.339	78,306	79.233	85.421				
2023	92.906	78,100	79.204	80,263	81,280	88,110				
2024	94.014	79,831	81,033	82,189	83.299	90,805				
2025	95.079	81,519	82,823	84,078	85.286	93.504				
2026	96.100	83,163	84,571	85,928	87.238	96.199				
2027	97,079	84,758	86,273	87,737	89,151	98.888				
2028	98.016	86.30 3	87,927	89,499	91.021	101.566				
2029	98.912	87.796	89.532	91,214	92,846	104,229				
2030	99.768	89.235	91.084	92,879	94,623	106,871				
2031	100,585	90.620	92.582	94,492	96.350	109,489				
2032	101.364	91 .94 7	94.024	96,050	98.025	112.079				
2033	102.107	93.218	95. 411	97,553	99.645	114.636				
2034	102.814	94,432	96.740	9 8,999	101.210	117.158				
2035	103.487	95,588	98. 011	100,387	102,717	i 19,640				
2036	104,126	<u>96.687</u>	<u>99.224</u>	101,717	104.166	122,078				
2037	104,734	97,729	100,379	102,989	105.556	124.470				
2038	105.310	98,714	101.476	104,201	106,887	126.813				

•

•

Exhibit No. S-11 Page 17 of 40 pages. Schedule No. 9, Page 2 of 2 pages.

Trailblazer Pipiline Company Docket No. RP03-162-000 Determination of Peak Year (Dry Gas in Bcf) Colorado, Wyoming

		Cumulative Production						
	Estimated	Pk. Yr.	Pk. Yr.	Pk. Yr.	Pk. Yr.	Pk. Yr.		
<u>Year</u>	Ult. Rec.	2014	2015	2016	2017	2025		
2039	105.858	99,644	102,516	105,355	108.158	129,103		
2040	106.376	100,520	103,500	106,451	109,370	131,339		
2041	106,868	101,342	104.428	107,489	110.523	133.517		
2042	107,333	102,113	105,301	168,471	111,618	135,636		
2043	107,774	102.833	106,121	109,397	112,654	1 37,694		
2044	108,191	103,504	106,890	110,268	113,634	1 39,689		
2045	108,586	104.129	107,609	111,087	114,558	141,621		
2046	108,958	104,709	108,279	111,854	115,428	143,487		
2047	109,311	105.246	10 8.9 03	112,571	116,245	145,287		
2048	109,643	105,742	109,482	113,240	117.010	147,021		
2049	109.958	106,199	110.019	113,863	117,726	148,688		
2050	110,254	106,619	110,515	114,442	118,395	150,289		
2051	110,534	107,005	110.972	114,978	119,017	151,822		
2052	110,798	107,358	111.393	115,475	119,595	153,289		
2053	111,047	107.680	111,780	115,932	120.131	154,690		
2054	111,281	107.973	112,134	116,354	120,627	156,026		
2055	111,503	108,239	112,457	116,741	121.085	157,298		
2056	111,711	108.481	112.752	117,896	121,507	158,506		
2057	111,907	108,699	113,020	117,421	121,895	159,652		
2058	112,092	108,896	113,264	117,717	122,251	160,738		
2059	112,266	109,074	113,484	117,987	122.577	161,765		
2060	112,430	109,233	113.683	118,232	122.875	162,734		
2061	112,585	109,376	113,863	118,455	123,147	163.647		
2062	112,730	109,503	114.024	118,656	123,394	164,506		
2063	112.867	109.617	114,169	118,837	123,618	165.313		
2064	112.995	109.718	114,299	119,001	123,821	166.070		
2065	113,116	109.808	114.415	119,148	124.004	166.778		
2066	113.230	109.887	114.518	119,280	124.170	167.440		
2067	113.337	109.957	114.610	119,398	124,319	168.058		
2068	113,438	110.019	114,691	119,503	124.453	168.633		
2069	113,532	110.073	114,763	119,597	124,573	169,168		
2070	113,621	110.121	114,827	119,680	124.680	169,665		
2071	113,705	110,162	114.883	119,754	124,776	170,125		
2072	113,783	110. 199	114,932	119,820	124.861	170.551		
2073	H3,857	110,230	114,975	119,878	124.937	17 0,944		
2074	113,927	110,258	115,013	119,928	125,004	171,307		
2075	113,992	110.282	115,046	119,973	125,064	171,640		

. ____

.

Exhibit No. S-11 Page 18 of 40 pages. Schedule No. 10, Page 1 of 1 pages.

Trailblazer Pipiline Company Docket No. RP03-162-000 Historical Additions to Reserves (Dry Gas in Bcf) (Colorado, Wyoming)

Year	Reserve Additions
1996	545
1997	2,213
1998	1,219
1999	1,233
2000	2,770
2001	4,798
Average	2,130

Source: U.S. Crude Oil, Natural Gas, and Natural Gas Liquids <u>Reserves, Annual Report (1996-2001)</u>, Energy Information Administration.

•

.

.

Exhibit No. S-11 Page 19 of 40 pages. Schedule No. 11, Page 1 of 1 pages.

. ___

Trailblazer Pipeline Company Docket No. RP03-162-000 Exploratory Drilling in Company's Supply Area - (Colorado, Wyoming) (Number of Wells)

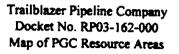
Year	Estimate for Current Year	Forecast for Next Year
1998	541	441
1 999	222	251
2000	405	477
2001	1,776	1,514
2002	351	284
Average	659	593

Sources:	Oil & Gas Journal, January 25, 1999, page 74.
	Oil & Gas Journal, January 31, 2000, page 65.
	Oil & Gas Journal, January 29, 2001, page 86.
	Oil & Gas Journal, January 28, 2002, page 87.
	Oil & Gas Journal, January 27, 2003, page 83.

.

.

Exhibit No. S-11 Page 20 of 40 pages. Schedule No. 12, Page 1 of 2 pages.


.....

Trailblazer Pipeline Company Docket No. RP03-162-000 Comparison of Staff's Esitmate of Undiscovered Gas to PGC Estimate (Volume in Bcf)

Staff Es	Level			
Undisco	overed Gas at 115,000 Bc	f Ultimate Recover	ry Level	46,787
Undisco	overed Gas as 35-year life	(to 2036)		33,504
PGC Es	timate (12/31/2000)			Level
		Probable	Possible	Total
		34,428	53.031	87.459
Compo	ments of the PGC Total			
P-510	Powder River			
	0-15.000 feet	1.435	2,153	3.588
	15,000-30,000 feet	-	-	
	Coalbed Methane	6,010	18,031	24,041
P-515	Big Hom			
	0-15,000 feet	672	530	1,202
	15,000-30,000 feet	170	616	786
	Coalbed Methane	-	25	25
P-530	Greater Green River, e	tc.		
	0-15,000 feet	8,997	4,851	13,848
	15,000-30,000 feet	979	5,696	6,675
	Coalbed Methane	-	-	
P-535	Denver, etc.			
	0-15.000 feet	1,324	1,215	2,539
	15,000-30,000 feet	-	-	-
	Coalbed Methane	-		
P-540	Uinta-Piccance, etc.			
	0-15.000 feet	14,208	15.599	29.807
	15,000-30,000 feet	500	200	700
	Coalbed Methane	133	4,115	4,248

Source: Potential Supply of Natural Gas in the United States, Report of the Potential Gas Committee, December 21, 2000. Potential Gas Agency, March 2001, pages 130, 131.

Exhibit No. S-11 Page 21 of 40 pages. Schedule No. 12, Page 2 of 2 pages.

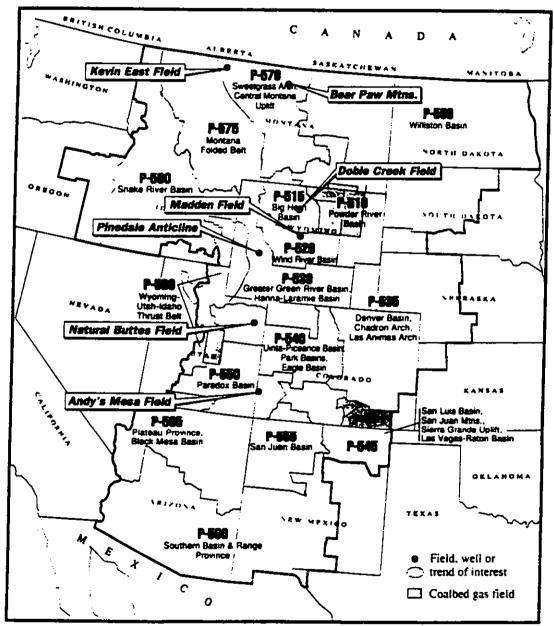


Figure 60. Geologic provinces and selected field activities in the Rocky Mountain Area.

Exhibit No. S-11 Page 22 of 40 pages. Schedule No. 13, Page 1 of 1 pages.

Trailblazer Pipeline Company Docket No. RP03-162-000 Description of PGC Resource Categories

PROBABLE RESOURCES are connected with known fields. They are the most certain of potential supplies. Reserves in this category are expected to come from extensions and new pool discoveries in existing fields.

POSSIBLE RESOURCES are not connected with known fields, but are connected with known productive formations. They are not as certain of potential supplies as probable resources. Reserves in this category are expected to come from new field discoveries in known productive formations.

SPECULATIVE RESOURCES are connected with formations that have not yet proven to contain natural gas reserves. They are the least certain of potential supplies. Reserves in this category are expected to come from discoveries in formations or provinces that have not previously yielded any reserves.

_ ---

.

.

.

Exhibit No. S-11 Page 23 of 40 pages. Schedule No. 14. Page 1 of 1 pages.

Trailblazer Pipeline Company Docket No. RP03-162-000 Outlook for Natural Gas Consumption DRI-WEFA, Inc. (Trillion Btu)

	East North	
	Central	Total
	Region	U.S .
Year	Consumption (1)	Consumption
1999	3,837	22,284
2000	3,893	23,362
2001	3,833	23,527
2002	3,965	24,135
2003	4,040	24,671
2004	4,054	25,010
2005	4,083	25,451
2010	4,437	28.099
2015	4,973	30,862
2020	5,278	32.498

(1) -- East North Central Region is comprised of Ohio. Wisconsin. Indiana. Michigan, and Illinois.

Source: <u>U.S. Energy Outlook, Spring-Summer 2001</u>, DRI-WEFA, Inc., 2001, page 78.

.

.

Exhibit No. S-11 Page 24 of 40 pages. Schedule No. 15, Page 1 of 1 pages.

. ____

Trailblazer Pipeline Company Docket No. RP03-162-000 Outlook for Natural Gas Consumption, U. S. Energy Information Administration (Quadrillion BTU/year)

	Natural
	Gas
Year	Consumption
2000	24.07
2001	23.26
2005	25.24
2010	27.75
2015	30.25
2020	32.96
2025	35.81

Source: Annual Energy Outlook 2003, with Projections to 2025, Energy Information Adminstration, January, 2003, page 119.

Exhibit No. S-11 Page 25 of 40 pages. Schedule No. 16, Page 1 of 5 pages.

Trailblazer Pipeline Company Docket No. RP03-162-000 Company Response to Staff Data Request (KJP-1), Item No. 17

TRAILBLAZER PIPELINE COMPANY

Data Response Form for Docket No. RP03-162-000

Requesting Party:	FERC Staff
Data Request Reference:	<u>KJP-1</u>
Data Request No:	17

Ouestion

<u>Exhibit No. TPC-1, page 8, lines 14 through 16</u>, please provide a list of firm shipper agreements, including for each agreement: the name of the shipper, the date the contract expires, any rollover or evergreen provisions, if the contract has been renewed in the past, and if the shipper is affiliated with Trailblazer.

Response

See attached. None of the agreements listed have rollover or evergreen provisions. Any agreement of one year or greater in length is subject to the right of first refusal process set out in Trailblazer's tariff.

Prepared by: Joan Soland

TRAILBLAZER PIPELINE COMPANY CURRENT FIRM TRANSPORTATION SHIPPERS RESPONSES TO FERC STAFF REQUEST KJP-1, #17				
				8
ANERICAN GVDSI IN COMPANY	AFFILIATE	RENEWED	NUMBER	
			928679	-
BADAK GAS MARKETING INC			828645	-
BLACK HILLS EXPLORATION AND PROVINCTION INC			912502	
BP CANADA ENERGY MARKETING CORDONATION			928610	-
BP ENERGY COMPANY			828646	-
BURLINGTON RESOLACES GATHERING INC			828642	-
BURLINGTON RESOURCES OFFICIANDE INC.			928663	-
BURLINGTON RESOLITICES OIL & GAE FOURATIV			929661	-
BURI INGTON RESOURCES TRADING AND			928962	-
CENTRAL AL ARAMA GAS SUDDI V VADD			929659	-
			928628	-
			928626	-
CHEVRON II S A PROPRIOTION COMPANY, A DIVISION OF CHEVRON U.S			912541	
			000000	•

DNTRACT

10/31/2003 10/31/2003 10/31/2003 10/31/2003 10/31/2003 10/31/2003 10/31/2003 10/31/2003 10/31/2003 10/31/2003 8/31/2009 10/31/2003 10/31/2003 0/31/2003 DATE 10/31/2003 1/30/2012 1/30/2012 8/31/2009 0/31/2003 8/30/2005 1/31/2007 0/31/2063 0/31/2003 0/31/2003 5/6/2012 2/31/2007 0/31/2003 0/31/2003 1/30/2008 0/31/2003 0/31/2003 0/31/2003 7/31/2007 913561 913562 914381 914381 914555 928674 928676 912500 912500 912500 912500 912500 912500 912500 912500 91250648 91250688 919366 910642 9226688 928649 928684 926614 B18853 928690 × × XXXX × DUKE ENERGY TRADING AND MARKETING, LLC DUKE ENERGY TRADING AND MARKETING, LLC DEVON ENERGY PRODUCTION COMPANY, L.P. CITY OF HASTINGS, HASTINGS UTILITIES COLORADO INTERSTATE GAS COMPANY ENGLAND RESOURCES CORPORATION CINERGY MARKETING & TRADING, LP CINERGY TRANSPORTATION, LLC ENERGY CAPITAL MANAGEMENT LLC EL PASO MERCHANT ENERGY, L.P. DUKE ENERGY NORTH AMERICA CIG RESOURCES COMPANY CIG RESOURCES COMPANY CIG RESOURCES COMPANY CIG RESOURCES COMPANY DUKE ENERGY FUELS, L.P. DUKE ENERGY FUELS, L.P. CONCORD ENERGY LLC CONCORD ENERGY LLC CONOCO INC. E PRIME, INC.

Trailblazer Pipeline Company Docket No. RP03-162-000 Company Response to Staff Data Request (KJP-1), Item No. 17

2

Exhibit No. S-11 Page 26 of 40 pages. Schedule No. 16, Page 2 of 5 pages.

0/31/2003

TRAILBLAZER PIPELINE COMPANY CURRENT FIRM TRANSPORTATION SHIPPERS RESPONSES TO FERC STAFF REQUEST KJP-1, #17

		PREVIOUSLY	CONTRACT					
SHIPPER NAME	AFFILIATE	RENEWED	NUMBER	DATE	MDQ			
ENSERCO ENERGY INC.			928609	10/31/2003	272			
FAIRFIELD MANAGEMENT INC FNA & ASSOCIATES, L.L.C.			928650	10/31/2003	272			
FRONTIER GAS PIPELINE CO			928608	10/31/2003	271			
GEARY ENERGY LLC			928633	10/31/2003	272			
GEARY GAS MARKETING, LLC			926685	10/31/2003	271		Ω Ω	
HEINLE & ASSOCIATES, INC			926686	10/31/2003	272		D D Company Response	
IGI RESOURCES, INC.			928682	10/31/2003	272		2	
J M HUBER CORPORATION			928647	10/31/2003	271		ŋy	
JURASSIC RESOURCES DEVELOPMENT N.A. LLC			919361	5/6/2013	41000		2	
KANSAS ENERGY PARTNERS, LLC.			928655	10/31/2003	272		-4	
KENNEDY OIL			927605	12/81/2007	4540		ŝ.	_
KERR MCGEE ENERGY SERV. CORP.			928612	10/31/2003	271		80	3
KINDER MORGAN INTERSTATE GAS TRANSMISSION, LLC	~	••	914925	3/31/2005	5920		Docket No. se to Staff L	[railblazer
LONE MOUNTAIN PRODUCTION CO.	×	x	901362	12/31/2007	5000		Si G	Ē
MARALEX RESOURCES, INC.			928875	10/31/2003	271		ket No. RP Staff Data	8
MARATHON OIL COMPANY			928677	10/31/2003	272			ý.
MARATHON OIL COMPANY			912479	7/31/2007	21200		RP03-	Pipeline
MARATHON OIL COMPANY			919467	5/8/2012	22500			5
MARATHON OIL COMPANY			927144	5/6/2012	100000		<u> </u>	e C
MESA HYDROCARBONS INC			928602	10/31/2003	272		03-162-000 Request (KJP-1), Item No.	Company
MISSOURI RIVER ROYALTY CORPORATION			928880	10/31/2003	271		36	a l
MONTANA HEARTLAND, LLC			928854	10/31/2003	271		78	Š
NATIONAL FUEL CORPORATION			928857	10/31/2003	272		JP (2
NATIONAL FUEL MARKETING COMPANY			928600		271		÷	
NICO RESOURCES, LLC			928599	10/31/2003	272		-	
OCCIDENTAL ENERGY MARKETING, INC.			928683	10/31/2003	272		g	
ONEOK ENERGY MARKETING AND TRADING COMPANY, L.P.			928644		271		7	
ONEOK ENERGY MARKETING AND TRADING COMPANY, L.P.		x	911109	4/30/2008	22000	2/	5	
ONEOK ENERGY MARKETING AND TRADING COMPANY, L.P.			912114		21200		. 17	
ONEOK ENERGY MARKETING AND TRADING COMPANY, L.P.		x	912252		10600		-	
PENNACO ENERGY, INC.			928601	10/31/2003	272			
PINE GAS GATHERING, LLC			928603	10/31/2003	272			
PRIORITY OIL & GAS CORP.			928658	10/31/2003	272			
QUESTAR ENERGY TRADING COMPANY			928678	10/31/2003	272			
			928619	10/31/2003	272			

Exhibit Nc. S-11 Page 27 of 40 pages. Schedule No. 16, Page 3 of 5 pages.

.

.

TRAILBLAZER PIPELINE COMPANY CURRENT FIRM TRANSPORTATION SHIPPERS RESPONSES TO FERC STAFF REQUEST KJP-1, 417
TRAILBLAZER P CURRENT FIRM RESPONSES TO

10/31/2003 10/31/2003 1031/2003 1031/2003 1031/2003 1031/2003 1031/2003 1031/2003 1031/2003 1031/2003 1031/2003 1031/2003 1031/2003 10/31/2003 10/31/2003 10/31/2003 003112003 0/31/2003 0/31/2003 0/31/2003 0/31/2003 0/31/2003 0/31/2003 7/31/2007 0/31/2003 0/31/2003 0/31/2003 CONTRACT 0/31/2003 0/31/2003 0/31/2003 0/31/2003 0/31/200 DATE **Q** 928618 928620 928652 912499 928613 928066 928635 928840 928629 928637 928685 928687 928643 928870 928625 928024 928672 328616 929669 928627 928632 928630 929617 928068 920067 928641 928621 928671 020022 928673 928636 928623 928611 929651 929661 CONTRACT NUMBER PREVIOUSLY RENEWED **VFFILIATE** QUESTAR EXPLORATION AND PRODUCTION INC SHIPPER NAME SANDIA RESOURCES CORPORATION ENASKA MICHIGAN PARTNERS, LP ENASKA ENERGY SERVICES, LLC FENASKA MARKETING VENTURES SEMPHA ENERGY TRADING CORP RELIANT ENERGY SERVICES, INC. **FENASKA GAS STORAGE, LLC** STERLING ENERGY COMPANY QUESTAR GAS MANAGEMENT **FENASKA FREDRICKSON, INC.** SELECT NATURAL GAS L.L.C. SHENANDOAH ENERGY, INC. ENASKA OPERATIONS, INC FENASKA OKLAHOMA II, INC FENASKA OKLAHOMA II, L.P. FENASKA MARKETING, INC. ENASKA MINNESOTA I.L.P FENASKA ALABAMA III, INC. FENASKA ARKANSAS I, L.P. ENASKA MICHIGAN II, INC. FENASKA MINNEBOTA, INC FENASKA MICHIGAN II, L.P. FENASKA ALABAMA III, L.P. **FENASKA ARKANSAS, INC.** TENASKA MICHIGAN, I.L.P. RAINBOW GAS COMPANY ENASKA GAS COMPANY ENASKA MICHIGAN, INC TENASKA INDIANA I, L.P. ENASKA GRIMES II, L.P. TENASKA INDIANA, INC. TENASKA GRIMES, INC. ENASKA RUSK, INC. FENASKA II, INC.

Trailblazer Pipeline Company Docket No. RP03-162-000 Company Response to Staff Data Request (KJP-1), Item No. 17

272 272 39600

Ø

272 271 271 Exhibit No. S-11 Page 28 of 40 pages. Schedule No. 16, Page 4 of 5 pages.

TRAILBLAZER PIPELINE COMPANY CURRENT FIRM TRANSPORTATION SHIPPERS RESPONSES TO FERC STAFF REQUEST KJP-1, #17

				CONTRACT	
		PREVIOUSLY	CONTRACT	END	
SHIPPER NAME	AFFILIATE	RENEWED	NUMBER	DATE	MDQ
TENASKA V. INC.			929631	10/31/2003	272
TENASKA WASHINGTON II, LP			928636	10/31/2003	272
TENASKA WATER SERVICES, LP			928634	10/31/2003	272
THE LOUISIANA LAND & EXPLORATION COMPANY			929660	10/31/2003	272
TMV CORP			928639	10/31/2003	272
UBS AG, LONDON BRANCH			928607	10/31/2003	272
UNITED ENERGY CORPORATION			928856	10/31/2003	272
UNITED ENERGY PARTNERS			926605	10/31/2003	271
UNITED ENERGY TRADING. LLC			928653	10/31/2003	272
UNITED STATES GYPSUM COMPANY		X	911097	3/31/2006	1466
VIRGINIA POWER ENERGY MARKETING			828604	10/31/2003	272
WESTERN GAS RESOURCES, INC.		X	911341	1/1/2008	30740
WESTERN GAS RESOURCES, INC.			912512	2/29/2008	10000
WESTERN GAS RESOURCES, INC.			919357	5/6/2012	57500
WESTERN GAS RESOURCES, INC.			926606	10/31/2003	272
WILLIAMS ENERGY MARKETING & TRADING COMPANY			911871	10/31/2007	5600
WILLIAMS ENERGY MARKETING & TRADING COMPANY			911925	11/30/2007	4320
WILLIAMS ENERGY MARKETING & TRADING COMPANY			915397	8/31/2005	12100
WILLIAMS ENERGY MARKETING & TRADING COMPANY			919359	5/6/2012	70000
WILLIAMS ENERGY MARKETING & TRADING COMPANY		x	927599	1/1/2008	21200

1/ WINTER ONLY AGREEMENT (EFFECTIVE NOVEMBER TO MARCH, INCLUSIVE) 2/ MDQ REDUCES TO 18,126 DTH EFFECTIVE 5/1/2003

NOTE: ALL AGREEMENTS WITH MDQ OF 271 OR 272 DTH (TOTAL OF 25,000 DTH/DAY) WILL BE REPLACED BY AGREEMENTS OF 367 OR 368 DTH EFFECTIVE (TOTAL OF 25,000 DTH/DAY) FOR THE PERIOD 11/1/2003 TO 8/31/2005 Trailblazer Pipeline Company Docket No. RP03-162-000 Company Response to Staff Data Request (KJP-1), Item No. 17

CONTRACT

Exhibit No. S-11 Page 29 of 40 pages. Schedule No. 16, Page 5 of 5 pages.

Unofficial FERC-Generated PDF of 20030523-0176 **Received by FERC** OSEC 05/22/2003 in Docket#: RP03-162-000

- ----

Exhibit No. S-11 Page 30 of 40 pages. Schedule No. 17, Page 1 of 3 pages.

Trailblazer Pipeline Company Docket No. RP03-162-000 On the Use of Iowa Curves

.

1	Iowa curves $1/$ are useful tools in establishing average service lives (ASL) and applicable
2	retirement patterns for each account, and from them determining each account's average
3	remaining life (ARL). Iowa curves are used to account for the normal retirements that
4	occur over the life of an account so that the account will be fully accrued when its useful
5	life is over. Normal retirements must be considered to insure that the account is not
6	under-accrued when its useful life is over. This is because the depreciation rates are
7	applied to the gross plant to arrive at the annual depreciation expense for each account.
8	When retirements are made from the gross plant, the annual depreciation expense would
9	decrease, with the result that the investment would not be fully recovered at the end of its
10	life were these retirements not taken into account in calculating the depreciation rate.
11	An Iowa curve, fitted to a particular account, predicts the ASL and retirement pattern
12	of that account. The ASL is the average length of time that all units of a group are
13	expected to last when they are new. The retirement pattern shows how much of the group
14	will be retired each year as the group ages. The ARL, which is of particular importance

^{1/} The Iowa curves were developed at the Iowa State College Engineering Experiment Station by extensive observation and classification of ages at which industrial property has been retired.

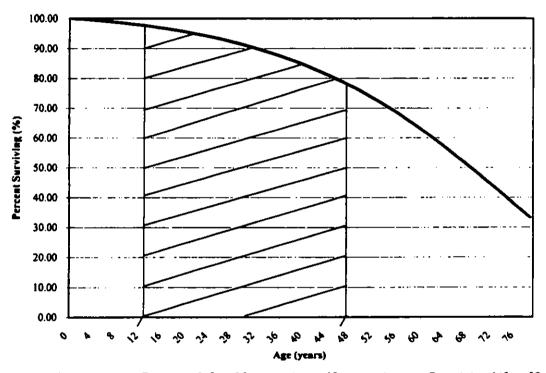
· · · **- ---**

.

.

Exhibit No. S-11 Page 31 of 40 pages. Schedule No. 17, Page 2 of 3 pages.

Trailblazer Pipeline Company Docket No. RP03-162-000 On the Use of Iowa Curves


1	in the calculation of the depreciation rate, is determined from the useful life of the facility
2	and from each account's Iowa curve.
3	Ideally, Iowa curves are chosen for each account by fitting them to vintaged
4	installation and retirement data. In the absence of sufficient retirement data, typical Iowa
5	curves found to be applicable in the staff's analyses of other pipeline companies can be
6	used. A sample lowa curve including a more detailed definition of terms follows on the
7	next page.

.

Exhibit No. S-11 Page 32 of 40 pages. Schedule No. 17, Page 3 of 3 pages.

Trailblazer Pipeline Company Docket No. RP03-162-000 Example of an Iowa Curve

Iowa-Type Survivor Curve 65-year Average Service Life, R2 Curve, 35-year Truncation

Example: Remaining Economic Life = 35 years; Age = 12 years; Average Remaining Life = 32 years

AVERAGE SERVICE LIFE (ASL) is the average expected life of all units of a group when new. The ASL equals the area under the survivor curve, from age zero to the maximum age, divided by the original group.

AVERAGE AGE is the average length of time that the units of a group have been in service. The older the units are, the shorter their remaining life is expected to be.

AVERAGE REMAINING LIFE (ARL) is the average life that remains to the surviving units of a group, at a given age for the group. The ARL is reported in years. It is calculated by obtaining the area under the survivor curve from an observation age to a maximum age and dividing this area by the ordinate at the observation age.

.

•

Exhibit No. S-11 Page 33 of 40 pages. Schedule No. 18, Page 1 of 1 pages.

Trailblazer Pipeline Company RP03-162-000 Determination of Average Remaining Life and Percent Surviving at Truncation

Function/Account	- Survivor Curve	12/31/02 Gross Plant	12/31/02 Average Age	12/31/02 Average Remaining	12/31/02 Percent Surviving at Trunc.	
Existing Plant						
Intangible						
Transmission						
all plant less comp.	65 R2	271,957,706	20.06	30.3	69.01	
compressor sta. equip.	30 R3	11,146,322	5.94	24.3	11.37	
Total		283,104,028		30.1	66.74	
Expansion Plant (see kjp-1, 3)						
Transmission						
compressor sta. equip.	30 R3	47,109,741	0.59	28 .1	31.98	
Existing and Expansion						
Transmission			16.77	29.8	61.78	

ERC-Generated	PDF of	E 2003052	23-0176	Received	by FER	C OSEC 05/	22/2003 in	Docket#:	RP03-162-0
							Schedule	Page 34	ibit No. S-11 of 40 pages. 1 of 1 pages.
t No. S-11 40 pages. A 1 pages.	Fa	actors in De	Dock	azer Pipeline et No. RP03 Calculation	-162-000	y mission Facilit			I of I pages.
Exhibit Page 34 of . 19, Page 1 of		ŧ	Difference in Amual Expense	° (5	17,434	(1 89 896, 1)	(119/1802)		
Ö				• * •				ĺ	
Schedule No.		(01)	at 12/31/02 Percent Surviving at Trunc.	8	2	39.16 14	61.78		
						· · · · · · · · · · · · · · · · · · ·			

			Facto	T ors in the Depo remaining eco	railblazer Pij RPO3- eciation Calc somic life = 34 years fr	Trailblazer Pipeline Company RP03-162-000 Factors in the Depreciation Calculation for Transmission Facilities remaining economic life = 35 years from 12/31/2001 or 34 years from 12/31/02	nission Facilitie 31/2001 or	_			
	€	8	(6)	£	3	9	ε	€	6	(01)	1
Function/Account V - Indiana Parasa	3/31/03 Gross Flaint (\$)	JJ1/03 Accred Deprociation (5)	Percen Net Plan	Company Existing Rete (%)	Compary Proposed Rate	Staff Recommended Rese	Servivar Curve	at 3/31/03 Average Remaining Life (yr)	Staff Calculated Depreciation Rate (%)	at 12/31/02 Percent Surviving at Truec. (%)	Difference in Annual Expense (5)
Linteregibbe	90.746	ME ,ES	62.37	06.66	0.0	0.0	t	31.75	82.2	;	
. Transmission	280,002,682	205,629,876	95.72	3.60	2.90	06.0	65 R.2,	5876Z	0.92	66.74	(5,664,00)
General	TC.FT	7,039	95. <u>96</u>	3.60	10.00	20.00	90 K3		19.92		17,43
Expansion Plant											
Transmission compresson sta. equip	47,109,741	2,197,940	95.33	8	00.7	04.6	30 R 3	27.85	3.42	86.16	(1,695,95
小学校的新生活的新生活的新生活的 。 新生活的新生活的新生活的新生活的新生活的新生活的新生活的新生活的新生活的新生活的							а 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
Esisting and Espansion											
Transmission	330,309,823	207,827,866	37 88	:	3.48 (calculated)	1.25	1	29.55	1.25	61.7 8	19'18('2)
	Notes.	tates in column (6)	6) rounded to new	rounded to nearest 0.05 precent							
		an crage remaining	y lives in column	(8) adjusted by 0	.25 year to brin	lives in column (8) adjusted by 0.25 year to bring date from 12/31/02 to 3/31/03	EDVIEN OF				

Unofficial FE 03-162-000

.

Exhibit No. S-11 Page 35 of 40 pages. Schedule No. 20, Page 1 of 1 pages.

Trailblazer Pipeline Company Docket No. RP03-162-000 Company Response to Staff Data Request (KJP-1), Item No. 4

TRAILBLAZER PIPELINE COMPANY

Data Response Form for Docket No. RP03-162-000

Requesting	Party:	FERC Staff
redecading	reary.	

Data Request Reference: KJP-1

Data Request No.: 4

Ouestion:

With respect to General Plant, please provide the major items in each account and the approximate dollar amount of each major item.

Response:

Account 391.01, Office Furniture and Equipment, \$3,551, Fax Machines;

Account 391.03, Computers, \$55.556, to include Mapping and Records, \$42,514, Digitization of location structures, \$10,653;

Account 392, Vehicles-Light Trucks, \$103,487, includes 3 Pick-up trucks, \$96,678, ATV and Trailer \$6,829:

Account 394,397,398. Tools and Work Equipment, \$11,783, includes Safety Climbing Devices, \$5,121, Phone System, \$4087.

Prepared by: Geoffrev E. Simmons

Exhibit No. S-11 Page 36 of 40 pages. Schedule No. 21, Page 1 of 1 pages.

Trailblazer Pipeline Company Docket No. RP03-162-000 Calculation of Depreciation Rate for General Plant

Account No.	Name	Gross Plant (12/31/02)	Estimate of ASL	Weighting Calculation	Contents of Account
391.1	office fum. & equip.	3,551	5	17,755	fax machines
391.3	computers	55,556	4	222,224	mapping and records, digitization of location structures
392.2, 392.5	vehicles-light trucks	103,487	5	517,435	3 pick-up trucks, ATV and trailer
394, 395, 398	tools and work equip.	11,783	10	117,830	safety climbing devices, phone system
	total	174,377		875,244	
	weighted-average ASL		5.02	yr.	
	ASL rate (100 / 5.02)		19.92	%	
	Recommended Rate		20.00	%	

Trailblazer Pipeline Company Docket No. RP03-162-000 Calculation of Depreciation Rate for General Plant

Exhibit No. S-11 Page 36 of 40 pages. Schedule No. 21, Page 1 of 1 pages.

Exhibit No. S-11 Page 37 of 40 pages. Schedule No. 22, Page 1 of 4 pages.

Trailblazer Pipeline Company Docket No. RP03-162-000 Correction of Mr. Simmons' UOP Calculation With Respect to His Treatment of Reserves Exhibit TPC-56, Schedule B, Uncorrected

.

•

(1) (2) (3) (4) (5) (6)

Row	Year	Beginning Supply Base	Future Reserve Additions	Annual Supply Base (2) + (3)	Future Annual Deliverability	Production Reserve Ratio (5)/(4)
1	2003	4,412	474	4,886	600	0.1228
2	2004	4,286	459	4,745	604	0.1273
3	2005	4,141	445	4,586	600	0.1308
4	2006	3,986	431	4,417	586	0.1327
5	2007	3,831	418	4,249	563	0.1325
6	2008	3,686	397	4,083	537	0.1315
7	2009	3,546	384	3,930	518	0.1318
8	2010	3,412	373	3,785	498	0.1316
9	2011	3,287	347 .	3,634	480	0.1321
10	2012	3,154	336	3,490	464	0.1330
11	2013	3,026	319	3,345	446	0.1333
12	2014	2,899	308	3,207	431	0.1344
13	2015	2,776	299	3,075	415	0.1350
14	2016	2,660	289	2,949	399	0.1353
15	2017	2,550	280	2,830	385	0.1360
16	2018	2,445	271	2,716	372	0.1370
17	2019	2,344	253	2,597	358	0.1379
18	2020	2,239	245	2,484	346	0.1393
19	2021	2,138	237	2,375	335	0.1411
20	2022	2,040	2 29	2,269	322	0.1419

Total

•

٠

6,794

					Doc Correction of			n					Correction of Mr. Simmons'
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	r. Simn
Row	Year	Depreciable Plant	Plant Additions	Accumulated Depreciation Reserve	Net Plant Balance (2) + (3) - (4)	Production Reserve Ratio	Calculated Depreciation <u>Expense</u> (5) x (6)	Avg. Annual Depreciation <u>Expense</u>	Average Plant Balance	Indicated Avg. Depreciation Rate (8)/(9)	Interim Retirement Rate	Average Depreciation <u>Rate</u> (10 + (11)	Docket No. RP03-162-000 nons' UOP Calculation with Respect
I	2003	283,169,7	**	203,434,8	79,734.9	0.1228	9,791.4	9,791,4	283,169.7	3.46	0.37		실출
2	2004	283,169.7		213,226.2	69,943.5	0.1273	8,903.8	9,347.6	283,169.7	3.30	0.37	3.83	E Z
3	2005	283,169.7		222,130.0	61,039,7	0.1308	7,984.0	8,893.1	283,169.7	3.14	0.38	3.68 3.53	o. RP03- lation wit
4	2006	283,169.7		230,114.0	53,055.7	0.1327	7,040.5	8,429.9	283,169.7	2.98	0.39	3.38	RP03-
5	2007	283,169.7	••	237,154.5	46,015.2	0.1325	6.097.0	7.963.3	283,169.7	2.81	0.40	3.38	20
6	2008	283,169.7		243,251.5	39,918.2	0.1315	5.249.2	7.511.0	283,169.7	2.65	0.40	3.06	글 뜻 (
7	2009	283,169.7	••	248,500.8	34,668.9	01318	4,569.4	7,090.8	283,169.7	2.50	0.42	2.92	-162-000 th Respect
8	2010	283,169.7	••	253,070.1	30,099.6	0.1316	3,961.1	6,699.6	283,169.7	2.37	0.43	2.80	6 X
9	2011	283,169.7		257,031.2	26,138.5	0.1321	3,452.9	6.338.8	283,169.7	2.24	0.44	2.68	- Žě
10	2012	283,169.7	•-	260,484.1	22,685.6	0.1330	3,017.2	6,006.7	283,169.7	2.12	0.45	2.57	_ğ ⊃ 3
11	2013	283,169.7		263,501.3	19,668.4	0.1333	2,621.8	5.698.9	283,169.7	2.01	0.46	2.47	8
12	2014	283,169 7		266,123.t	17,046.6	0.1344	2,291.1	5,414.9	283,169.7	1.91	0.47	2.38	Ŧ
13	2015	283,169.7		268,414.2	14,755.5	0.1350	1,992.0	5,151.6	283,169.7	1.82	0.48	2.30	His
F4	2016	283,169.7	••	270,406.2	12,763.5	0.1353	1,726.9	4,907.0	283,169.7	1.73	0.49	2.22	1
15	2017	283,169 7		272,133.1	11,036.6	0.1360	1,501.0	4,680.0	283,169,7	1.65	0.50	2.15	2
16	2018	283,169 7		273,634.1	9,535.6	0.1370	1,306.4	4,469.1	283,169.7	1.58	0.51	2.09	<u>-</u>
17	2019	283,169 7		274,940.4	8,229.3	0.1379	1,134.8	4,273.0	283,169.7	1.51	0.52	2.03	ğ
18	2020	283,169 7		276,075.3	7,094.4	0.1393	988.3	4,090.5	283,169.7	1.44	0.53	1.97	ž
19	2021	283,169.7		277,063.5	6,106.2	0.1411	861.6	3,920.5	283,169.7	1.38	0.54	1.92	Pf .
20	2022	283,169 7		277,925.1	5,244.6	0.1419	744.2	3,761.7	283,169.7	1.33	0.55	1.92 1.88	Treatment of Reserves

٠

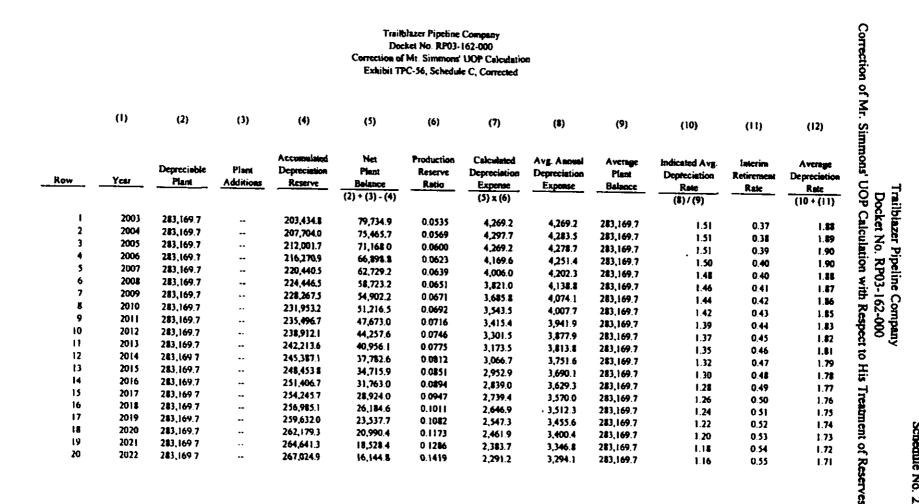
Unofficial FERC-Generated PDF of 20030523-0176 Received by FERC OSEC 05/22/2003 in Docket#: RP03-162-000

___.

Exhibit No. S-11 Page 39 of 40 pages. Schedule No. 22, Page 3 of 4 pages.

Trailblazer Pipeline Company Docket No. RP03-162-000 Correction of Mr. Simmons' UOP Calculation With Respect to His Treatment of Reserves Exhibit TPC-56, Schedule B. Corrected

(1) (2) (3) (4) (3) (6)	(1)	(2)	(3)	(4)	(5)	(6)
-------------------------	-----	-----	-----	-----	-----	-----


Row	Year	Beginning Supply Base	Future Reserve Additions	Annual Supply Base $(2)_{2003} + \Sigma(3)$ $(4)_{n-1} - (5)_{n-1}$	Future Annual Deliverability	Production Reserve Ratio (5)/-(4)
1	2003	4,412	474	11,206	600	0.0535
2	2004	4,286	459	10,606	604	0.0569
3	2005	4,141	445	10.002	600	0.0600
4	2006	3,9 8 6	431	9,402	586	0.0623
5	2007	3,831	418	8,816	563	0.0639
6	2008	3,686	397	8,253	537	0.0651
7	2009	3,546	384	7,716	518	0.0671
8	2010	3,412	373	7,198	498	0.0692
9	2011	3,287	347	6,700	480	0.0716
10	2012	3,154	336	6,220	464	0.0746
11	2013	3,026	319	5,756	446	0.0775
12	2014	2,899	308	5,310	431	0.0812
13	2015	2,776	2 99	4,879	415	0.0851
14	2016	2,660	289	4,464	399	0.0894
15	2017	2,550	280	4,065	385	0.0947
16	2018	2,445	271	3,680	372	0.1011
17	2019	2,344	253	3.308	358	0.1082
18	2020	2,239	245	2.950	346	0.1173
19	2021	2,138	237	2,604	335	0.1286
20	2022	2,040	229	2,269	322	0.1419

Total

•

.

6,794

Unofficial FERC-Generated

PDF

0f

20030523-0176

Received

by FERC

OSEC

05/22/2003

in Docket#:

RP03-162-000

EXHIBIT NO. S-12

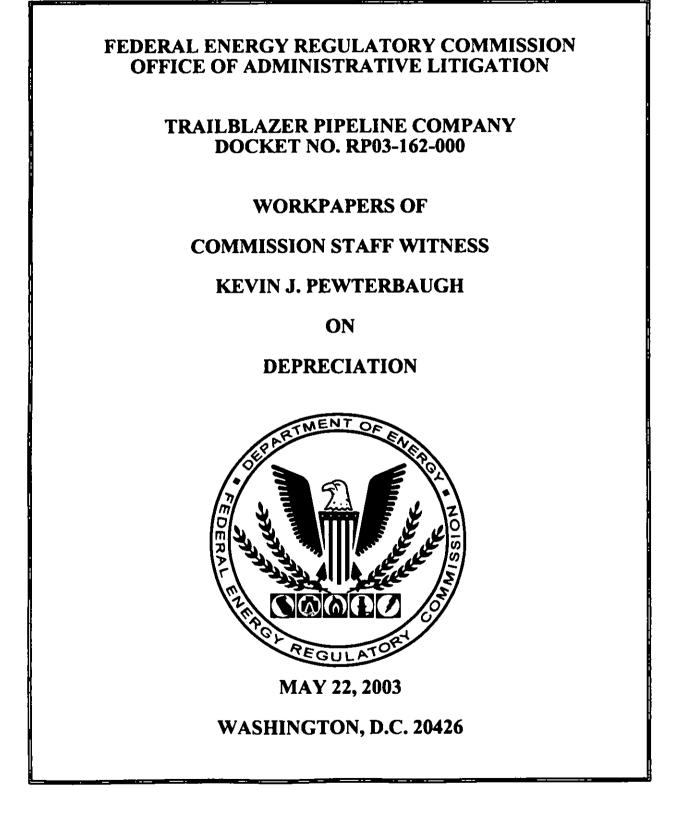


Exhibit No. S-12 Page 1 of 24 pages. RP03-162-000, Workpapers

Exhibit No. S-10 Page of pages.

Schedule No. 13 Page 1 of 1 pages.

Trailblazer Pipiline Company Docket No. RP03-162-000 Historical Annual Production and Remaining Reserve Data (Dry Gas in Bcf)

.

Domestic Supply Area

(Colorado, Wyoming)

	Dry Production					
Year	Colorado	Wyoming	Total	Cum.		
1977	174	315	489	13,357		
1978	167	329	496	13,853		
1979	156	355	511	14,364		
1980	163	416	579	14,943		
1981	165	423	588	15,531		
1982	196	391	587	16,118		
1983	156	414	570	16,688		
1984	171	484	655	17,343		
1985	166	433	599	17,942		
1986	188	402	590	18,532		
1987	159	456	615	19,147		
1988	188	510	698	19,845		
1989	220	591	811	20,656		
1990	229	583	812	21,468		
1991	282	639	921	22,389		
1992	320	714	1,034	23,423		
1993	387	713	1,100	24,523		
1994	447	780	1,227	25,750		
1995	514	806	1,320	27,070		
1996	540	782	1,322	28,392		
1997	562	891	1,453	29,845		
1998	676	838	1,514	31,359		
1999	719	1,213	1,932	33,291		
2000	759	1,070	1,829	35,120		
2001	882	1,286	2,168	37,288		

Exhibit No. S-12 Page 2 of 24 pages. RP03-162-000, Workpapers

-	Dry Remaining Reserves							
Year	Colorado	Wyoming	Total					
1977	2,512	6.305	8,817					
1978	2,765	7,211	9,976					
1979	2.608	7,526	10,134					
1980	2,922	9,100	12,022					
1981	2,961	9,307	12,268					
1982	3.314	9,758	13.072					
1983	3,148	10,227	13,375					
1984	2,943	10,482	13,425					
1985	2,881	10,617	13,498					
1986	3,027	9,756	12,783					
1987	2.942	10,023	12,965					
1988	3,535	10,308	13,843					
1989	4,274	10,744	15,018					
1990	4,555	9,944	14,499					
1991	5,767	9,941	15,708					
1992	6,198	10,826	17,024					
1993	6,722	10,933	17,655					
1994	6,753	10,879	17,632					
1995	7,256	12,166	19,422					
1996	7,710	12,320	20,030					
1997	6,828	13,562	20,390					
1998	7,881	13,650	21,531					
1999	8,987	14,226	23,213					
2000	10,428	16,158	26,586					
2001	12,527	18,398	30,925					

,

Source: U.S. Cryde Oil, Natural Gas, and Natural Gas Liquids <u>Reserves, Annual Report (1977-1998)</u>, Energy Information Administration.

Wet Production										
	d/w		d/w		d/w	cum prod.	wet	cum. prod. o	iry	
Colorado		Wyoming		<u>T</u> otal	-	Colorado	Wyoming	Colorado	Wyoming	Total
not reported										
not reported										
171	0.9123	370	0.9595	542	0.9430					
178	0.9157	430	0.9674	609	0.9509					
180	0.9167	439	0.9636	620	0.9485					
211	0.9289	407	0.9607	619	0.9484					
167	0.9341	434	0.9539	602	0.9469					
183	0.9344	508	0.9528	692	0.9466					
178	0.9326	458	0.9454	637	0.9404					
199	0.9447	428	0.9393	628	0.9396					
169	0.9408	481	0.9480	651	0.9448					
200	0.9400	539	0.9462	740	0.9433	6,404	14,620	5,956	13,889	19,845
avg. =	0.9300		0.9537							
use =	0.93		0.95							

٠

٠

٠

Τ5

Exhibit No. S-12 Page 4 of 24 pages. RP03-162-000, Workpapers

<u>T's supply orens</u> (Harrell) <u>Wyoming</u> E Pounder River := 2000 Bigher Creen R.m Will Piner Washale. e Red Desert Henna W restancyming Colorad. E Denser Piceance is vert of Colorado Cotoralo encluded (suther co)

Raten SAN Joan Perchix

wy,co

W Unte Basin

* E.R. Lou (E) W-Richins (w)

Of Lo- W/ = all but Founder F. Basin Than CO = worther 25 5 CO cad Barran

T's supply over -

Exhibit No. S-12 Page 5 of 24 pages. RP03-162-000, Workpapers

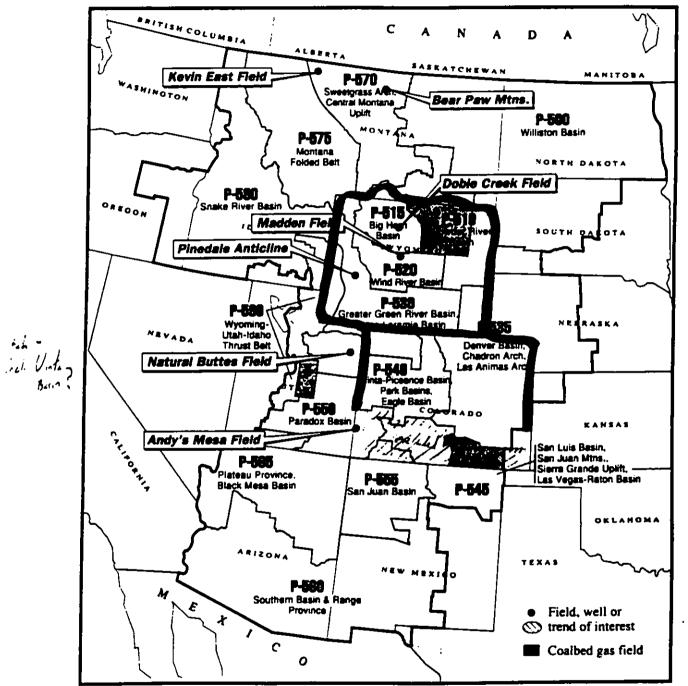


Figure 60. Geologic provinces and selected field activities in the Rocky Mountain Area.

Exhibit No. S-12 Page 6 of 24 pages. RP03-162-000, Workpapers

TRAILBLAZER PIPELINE COMPANY

Data Response Form for Docket No. RP03-162-000

Requesting Party: <u>FERC Staff</u>

Data Request Reference: KJP-1

Data Request No.: <u>3</u>

Ouestion:

For depreciable, jurisdictional plant, and amortizable plant as of December 31, 2001, and as of December 31, 2002, provide, broken out consistent with the FERC Form No. 2: the plant in service, the accumulated reserve for depreciation or amortization, and the average age of the plant. Update this information through April 30, 2003, the end of the test period, as information becomes available.

Response:

See the attached schedules for the plant and accumulated reserve balances requested.

The average age of the Existing System Facilities transmission plant is approximately 19.5 years as of December 31, 2002. The average age of the Expansion 2002 System Facilities transmission plant is approximately .59 years at December 31, 2002. The average age of the Existing System Facilities transmission plant is approximately 18.5 years at December 31, 2001. The Expansion 2002 System was not in service at December 31, 2001. See the attached schedules for average age calculations.

Prepared by: Geoffrey E. Simmons

TRAILBLAZER PIPELINE COMPANY

Account 101 - Gas Plant in Service

	Existing System	Account Number	\$ <u>Dec-01</u>	\$ <u>Aug-02</u>	\$ <u>Sep-Q2</u>	\$ <u>Oçi-02</u>	\$ <u>Nov-02</u>	\$	D e c∙02
1	Miscellaneous Intangible Plant	303	90,746	90,746	90,746	90,746	90,746		90,746
	Transmission Plant								
2	Land and Land Rights	365.1	724.062	724,062	724.062	704.000	77.4.000		
3	Rights of Way	365.2	3.672.077	3.672.077	3,672,077	724,062	724,062		724,062
4	Structures and Improvements	366	1.801.395	1,801,395	•••	3,672,077	3,672,313		3,672,313
5	Mains	367	261,725,687	261,725,687	1,801,395	1,801,395	1,801,395		1,831.502
6	Compressor Station Equipment	368	11,146,322	11,146,322	261,725,687	261,725,687	261,903,037		261,903,037
7	Measuring and Regulating Station Equipment	369	3.596.587	3,596,587	3,596,587	11,146,322	11,146,322		11,146,322
8	Communication Equipment	370	948,417	948,417	948,417	3.596,587 948,417	3,602,438 948,417		3.602,438 948,417
9	Total Transmission Plant		283,614,547	283,614,547	283,614,547	283,614,547	283,797,983		283.828.090
	General Plant								
10	Office Furniture and Equipment	391.1	9,971	7					
11	Computers	391.3	8,971	7,581	7,581	7,581	3,551		3,551
12	Vehicles-Light Trucks	392.2, 392.5	•	2,389	2,389	2,389	55,556		55,556
13	Tools and Work Equipment	394, 397,398	2.067	96,658	96,658	96,658	103,487		103.487
		034, 037,030	2,007	2,067	2,067	2,067	6,662		11,783
14	Total General Plant		12,038	108,695	108,695	108,695	169,256	••	174.377
15	Total Gas Plant in Service - Existing System		283,717,331	283,813.988	283,813.988	283,813,988	284.057,985		284.093 213
	Expansion 2002 System								
10	Compressor Station Equipment	368	•	45,299,764	45,299,764	46,992,013	47,109,741		47,109,741
17	Total Gas Plant in Service - Expansion 2002 System		•	45,299,764	45,299,764	46,992,013	47,109,741	••	47,109,741
18	Total Gas Plant in Service		263,7 17, 3 31	329,113,752	329,113,752	330,806,001	331,167,727		331,202,955

Exhibit No. S-12 Page 7 of 24 pages. RP03-162-000, Workpapers

TRAILBLAZER PIPELINE COMPANY Accumulated Reserve for Depreciation, Depletion and Amortization

		<u>Dec-01</u>	<u>Aug-02</u>	<u>Sep-02</u> S	<u>Oci-02</u>	<u>Nov-02</u>	Dec-02
	Existing System		•	•	1		
1	Account 108 - Accumulated Provisions for Depreciation of						
	Gas Plant in Service						
2	Transmission:						
3	Onshore	(193,254,048)	(200,029,869)	(200,868,011)	(201,684,889)	(202,553,924)	(203,094,870)
4	General Plant	(849)	(4,222)	(4,756)	(5,291)	(1,903)	(2,626)
5	Total Account 108	(193,254,897)	(200,034,091)	(200,872,767)	(201,690,180)	(202,555,826)	(203,097,496)
6	Account 111 - Accumulated Provisions for Amortization						
7	Intangib le	(19,423)	(21,601)	(21,873)	(22,145)	(22,418)	(22.690)
8	Total Accumulated Reserve for Depreciation,						•••••
	Depletion and Amortization - Existing System	(193,274,320)	(200,055,692)	(200,894,640)	(201,712,325)	(202,578,244)	(203,120,186)
9	Expansion 2002 System Account 108 - Accumulated Provisions for Depreciation of						
Ū	Gas Plant in Service Expansion 2002 System	0	(573,789)	(770,079)	(966,370)	(1,162,660)	(1,665,470)
					******	••••••	
10	Total Accumulated Reserve for Depreciation, Depletion and Amortization	(193,274,320)	(200,629,481)	(201,664,719)	(202,678,695)	(203,740,904)	(204,785,656)

Data Request Reference: KJP-1, #3

Exhibit No. S-12 Page 9 of 24 pages. RP03-162-000, Workpapers

.

Traiblazer Pipeline Company Plant in Service-By Account Vintage Basis as of December 31, 2002

	Account		Cost	In Service	Current Date	Age in Davs	Weighted
E.,		- 5	lities—Transmisal	an Direct	<u>Conte</u>	0/015	Cost
50	36610		30,107.48	31-Dec-02	01-Jan-03	1	30,107
	36610		21,305.41	01-Jul-84	01-Jan-03	6,758	143,981,961
	36610		33.133.34	01-Jun-84	01-Jan-03	6,788	224,909,112
	36610		1,338,657.81	01-Oct-82	01-Jan-03	7,397	
	36620		76,225.75	31-May-00	01-Jan-03	945	9,902,051,821
	36620		7,338.57	01-Nov-93	01-Jan-03	3.348	72,033,334
	36620		4,735.23	01-Sep-91	01-Jan-03		24,569,532
	36620		295.277.17	01-Oct-82	01-Jan-03	4,140	19,603,852
	36630		24,721.44	01-Jun-84	01-Jan-03	7,397	2,184,165,226
	36700		9,415.05	30-Nov-02	01-Jan-03	6,788	167,809,135
	36700		167,935.13	31-Oct-02		32	301,282
-	•• • •		38.39		01-Jan-03	62	10,411,978
	36700		6,900.62		01-Jan-03	915	35,127
	36700			31-May-00	01-Jan-03	945	6,521,085
	36700		2,522.09	31-Mar-00	01-Jan-03	1,006	2.537,223
	38700		2,535.000.00	01-Feb-97	01-Jan-03	2,160	5.475.600,000
	38700		512,540.23	01-Sep-96	01-Jan-03	2,313	1.185.505.552
	36700		227,443.21	_01-Nov-95	01-Jan-03	2,618	595,446,324
	36700		62.298.00	01-May-95	01-Jan-03	2,802	174,558,996
	36700	-	36,274.02	01-Feb-90	01-Jan-03	4,717	171,104,552
	36700		218.76	01-Feb-85	01-Jan-03	6,543	1,418,251
	36700		7,183.13	01-Dec-83	01-Jan-03	6,971	50,073,599
	36700		(3.489.56)	01-Dec-82	01-Jan-03	7,336	(25,599,412)
	36700		258,336.948.57	01-Oct-82	01-Jan-03	7,397	1,910,918,408,572
	36711		1,811.51	01-Nov-93	01-Jan-03	3,348	6,064,935
	36800		0.48	30-Sep-02	01-Jan-03	93	45
	36800		10,680,915.74	01-Jul-97	01-Jan-03	2,010	21,458,640,637
	36800		259,729.57	01-Jun-97	01-Jan-03	2,040	529,848,323
	36800		8,365.39	01-Aug-96	01-Jan-03	2,344	19,608,474
	35800		(195.038.67)	01-Nov-95	01-Jan-03	2,618	(510,611,238)
	36800		50,604.17	01-Sep-84	01-Jan-03	3,044	154,039,093
	36800	_	12,775.50	01-Apr-87	01-Jan-03	5,754	73,510,227
	36800	-	30,552.53	01-Dec-83	01-Jan-03	6,971	212,981,687
	36800		3,677.19	01-Oct-83	01-Jan-03	7,032	25,858,000
	36800		294,740.56	01-Oct-82	01-Jan-03	7.397	2,180,195,922
	36901		9,654.47	30-Nov-02	01-Jan-03	32	308,943
	36901	•	39,237.20	31-Oct-02	01-Jan-03	62	2,432,708
	36901	•• •	14,505.51	01-Feb-95	01- Jan-03	2.891	41,935,429
	36901		15,116.97	01-Nov-83	01-Jan-03	3,348	50,611,818
	36901		12,374.53	01-Sep-91	01-Jan-03	4,140	51,230,554
٠	35901		5,575.27	01-Aug-85	01-Jan-03	6,362	35,469,868
	36901	·- ·	3,505,973.57	01-Oct-82	01-Jan-03	7,397	25,933,686,497
	37001		20,382.98	01-Feb-85	01-Jan-03	6,543	133,385,838
	37001		30,041.13	01-Dec-84	01-Jan-03	6.605	198,421,664
	37001		262,002.01	01-Oct-82	01-Jan-03	7.397	1,938,028,868
	37002		7,473.76	01-Aug-93	01-Jan-03	3,440	25,709,734
	37002		2,178.16	01-Jun-91	01-Jan-03	4,232	9,217,973
	37002		4,991.62	01-Jun-90	01-Jan-03	4,597	22,946,477
	37002		36,197.32	01-Dec-89	01-Jan-03	4,779	172,986,992
	37002		11,888.07	01-Apr-89	01-Jan-03	5.023	59,713,778
	37002		7,552.00	01-Mar-85	01-Jan-03	6.515	49,201,280
	37002		561,549.69	01-Oct-82	01-Jan-03	7, 397	
			2,149.77				4,153,783,057
	37002			01-Jul-82	01-Jan-03	7,489	16,099,628
	37002		2,010.81	01-Jun-82	01-Jan-03	7.519	15,119,280
		\$	279,431,717			\$	
							19.50

Expansion 2002 System Facilities Transmission Plant										
36800	47.109.740.93	31-May-02	01-Jan-03	215	10,128,594.300 0.59					

Exhibit No. S-12 Page 10 of 24 pages. RP03-162-000, Workpapers

Data Request Reference: KJP-1, #3

.

Trailblazer Pipeline Company Plant in Service-By Account Vintage Basis as of December 31, 2002

				Current	Age in	Weighted
	Account	Cost	In Service	Date	Davs	Cost
		vstem Facilities	·			
	36610	21,305.41	01-Jul-84	01-Jan-02	6.393	136.205.486
	36610	33,133.34	01-Jun-84	01-Jan-02	6.423	212,815,443
	36610	1,338.657.81	01-Oct-82	01-Jan-02	7,032	9,413,441,720
	38820	76,225.75	31-May-00	01-Jan-02	500	44,210,935
	36620	7,338.57	01-Nov-93	01-Jan-02	2,983	21,890,954
	36620	4,735.23	01-Sep-91	01-Jan-02	3,775	17,875,493
	36620	295.277.17	01-Oct-82	01-Jan-02	7.032	2,076.389.059
	36630	24,721.44	01-Jun-84	01-Jan-02	6,423	158,785,809
•-•	38700	38.39	30-Jun-00	01-Jan-02	550	21,115
	36700	6,900.62	31-May-00	01-Jan-02	580	4,002,360
	36700	2,522.09	31-Mar-00	01-Jan-02	641	1,616.660
	36700	2,535,000.00	01-Feb-97	01-Jan-02	1,795	4,550,325.000
``	36700	512,540.23	01-Sep-96	01-Jan-02	1,948	998,428,388
617 ¹	36700	227.443.21	01-Nov-95	01-Jan-02	2,253	51 2,429,55 2
	36700	62.298.00	01-May-95	01-Jan-02	2,437	151,820,226
	36700	36,274.02	01-Feb-90	01-Jan-02	4,352	157,864,535
	36700	216.76	01-Feb-85	01-Jan-02	6,178	1,339,143
	36700	7,183.13	01-Dec-83	01-Jan-02	6,606	47,451,757
	36700	(3,489.56)	01-Dec-82	01-Jan-02	6. 9 71	(24,325,723)
	36700	258,336,948.57	01-Oct-82	01-Jan-02	7,032	1,816,625,422,344
	36711	1,811.51	01-Nov-93	01-Jan-02	2,983	5,403,734
	36800	10,680,915.74	01-Jul-97	01-Jan-02	1.645	17,570,106.392
	36800	259,729.57	01-Jun-97	01-Jan-02	1,675	435,047,030
	36800	8,365.39	01-Aug-96	01-Jan-02	1,979	16,555,107
1. 7. 5	36800	(195,038.67)	01-Nov-95	01-Jan-02	2.253	(439,422,124)
••	36800	50.604.17	01-Sep-94	01-Jan-02	2.679	135,568,571
4, T 1	36800	12,775.50	01-Apr-87	01-Jan-02	5.389	68,847,170
	36800	30.552.53	01-Dec-83	01-Jan-02	6.606	201,830,013
	36800	3,677.19	01-Oct-83	01-Jan-02	6,667	24,515,826
	36800	294,740.56	01-Oct-82	01-Jan-02	7.032	2.072,615,618
~	36901	14.505.51	01-Feb-95	01-Jan-02	2.526	36,640,918
	36901	15,118.97	01-Nov-93	01-Jan-02	2.983	45,093,922
	36901	12,374.53	01-Sep-91	01-Jan-02	3,775	46,713,851
	36901	5,575.27	01-Aug-85	01-Jan-02	5.997	33,434,894
	36901	3,505,973.57	01-Oct-82	01-Jan-02	7,032	24,854,006,144
	37001	20,382.98	01-Feb-85	01-Jan-02	6,178	125,928.050
	37001	30,041.13	01-Dec-84	01-Jan-02	6.240	187,456,651
	37001	262,002.01	01-Oct-82	01-Jan-02	7,032	1,842,398,134
	37002	7,473.76	01-Aug-93	01-Jan-02	3.075	22,961,812
	37002	2,178.16	01-Jun-91	01-Jan-02	3.867	8,422,945
	37002	4,991.62	01-Jun-90	01-Jan-02	4.232	21,124,535
	37002	36,197.32	01-Dec-89	01-Jan-02	4,414	159,774,970
	37002	11,888.07	01-Apr-89	01-Jan-02	4.658	55.374.630
	37002	7,552.00	01-Mar-85	01-Jan-02	6,1 5 0	46.444.800
	37002	561,549.69	01-Oct-82	01-Jan-02	7,032	3,948,817,420
	37002	2.149.77	01-Jul-82	01-Jan-02	7,124	15,314,961
	37002	2.010.81	01-Jun-82	01-Jan-02	7,154	14,385,335
		\$ 279.175.367	·······			s 1,886,463,389.546
						18.51

Expansion 2002 System Facilities 36800 •

.

Trailblazer RP03-162 see response to kjp-1, 3 existing plant, all

.

Exhibit No. S-12 Page 11 of 24 pages. RP03-162-000, Workpapers

		in service	current	age in	weighted
Account	plant	date	date	davs	cost
36610	30,107,46		1/1/2003	· · · · ·	30.1
36610	21,305.41	7/1/1984	1/1/2003	6758	143.981.9
36610	33,133,34	6/1/1984	1/1/2003	6788	224.909.1
36610	1,338,657.81	10/1/1982	1/1/2003	7397	9,902,051,8
36620	76,225.75	5/31/2000	1/1/2003	945	72,033,3
36620	7,338.57	11/1/1993	1/1/2003	3348	24,569,5
36620	4,735.23	9/1/1991	1/1/2003	4140	19,603,8
36620	295,277.17	10/1/1982	1/1/2003	7397	2.184,165,2
36630	24,721.44	6/1/1984	1/1/2003	6788	167.809,1
36700	9,415.05	11/30/2002	1/1/2003	32	301,2
36700	167,935.13	10/31/2002	1/1/2003	62	10,411.9
36700	38.39	6/30/2000	1/1/2003	915	35.1
36700	6,900.62	5/31/2000	1/1/2003	945	6,521,0
36700	2.522.09	3/31/2000	1/1/2003	1006	2,537,2
36700	2,535,000.00	2/1/1997	1/1/2003	2160	5,475,600,0
36700	512,540.23	9/1/1996	1/1/2003	2313	1,185,505.5
36700	227,443.21	11/1/1995	1/1/2003	2618	595.446.3
36700	62,298.00	5/1/1995	1/1/2003	2802	174,558.9
	36.274.02	2/1/1990	1/1/2003	4717	171,104,5
36700	216.76	2/1/1985	1/1/2003	6543	1,418,2
36700	7,183.13	12/1/1983 12/1/1982	1/1/2003	<u>6971</u> 7336	50.073.5
<u></u>	258,336,948.57	10/1/1982	1/1/2003	7397	<u>(25,599,4</u> 1,910,918.408.5
36711	1,811.51	11/1/1993	1/1/2003	3348	<u>1,910,918.408.3</u> 6,064.9
36800	0.48	9/30/2002	1/1/2003	<u> </u>	0,004.9
36800	10,680,915.74	7/1/1997	1/1/2003	2010	21,468,640,6
36800	259,729.57	6/1/1997	1/1/2003	2010	529,848,3
36800	8,365.39	8/1/1996	1/1/2003	2344	19.608,4
36800	(195,038.67)	11/1/1995	1/1/2003	2618	(510,611,2
36800	50.604.17	9/1/1994	1/1/2003	3044	154.039,0
36800	12,775.50	4/1/1987	1/1/2003	5754	73,510,2
36800	30,552.53	12/1/1983	1/1/2003	6971	212,981,6
36800	3,677.19	10/1/1983	1/1/2003	7032	25,858,0
36800	294,740.56	10/1/1982	1/1/2003	7397	2,180,195,9
36901	9.654.47	11/30/2002	1/1/2003	32	308,9
36901	39,237.20	10/31/2002	1/1/2003	62	2,432,7
36901	14,505,51	2/1/1995	1/1/2003	2891	41,935.4
36901	15,116.97	11/1/1993	1/1/2003	3348	50,611,6
36901	12.374.53	9/1/1991	1/1/2003	4140	51,230,5
36901	<u>5.</u> 575.27	8/1/1985	1/1/2003	6362	35,469.8
36901	3,505,973.57	10/1/1982	1/1/2003	7397	25.933,686.4
37001	20.387.98	2/1/1985	1/1/2003	6543	133,365,8
37001	30.041.13	12/1/1984	1/1/2003	6605	198,421,6
37001	262,002.01	10/1/1982	1/1/2003	7397	1,938.028.8
37002	7,473.76	8/1/1993	1/1/2003	3440	25,709,7
37002	2,178.16	6/1/1991	1/1/2003	4232	9,217,9
37002	4,991.62	6/1/1990	1/1/2003	4597	22,946,4
37002	<u>36.197.32</u> 11.888.07	12/1/1989	1/1/2003 1/1/2003	4779	<u>172,986,9</u>
_ <u>37002</u>	7,552.00	4/1/1989	1/1/2003	<u>5023</u> 6515	<u>59,713,7</u> 49,201,2
37002		10/1/1982	1/1/2003	7397	4,153,783,0
37002	2.149.77	7/1/1982	1/1/2003	7489	4,155,783,0
37002	2,010.81	<u>6/1/1982</u>	1/1/2003	7519	15,119,2
57002	2,010.01			7317	13,119,4
• -		·	- · •	·· · ·	
	279.431.716.63			· · ·	1.988.375.883,5
		···= · · · -···		· · · · · · · · · · · · · · · · · · ·	
-	··· - •	·· ··· ··		•··· • •• •	7115.784

P03-162	· · · · ·	•	• •		
•	ie to kjp-1, 3		• •	•	
ustung plan	k, ali 🔄				
_	····· ·····			 .	•
	· · • • ·	IT SETVICE	current	age in	weighted
count	plant	date	date	days	cost
36610	30,107.46	12/31/2002	1/1/2003	1	
36610	21,305,41	7/1/1984	1/1/2003	6758	143.981.961
36610	33,133.34	6/1/1984	1/1/2003	6788	224,909,112
36610	1,338,657.81	10/1/1982	1/1/2003	7397	9,902,051,821
36620	76,225,75	5/31/2000	1/1/2003	945	72,033,334
36620	7,338.57	11/1/1993	1/1/2003	3348	24,569,532
36620	4,735.23	9/1/1991	1/1/2003	4140	19,603.852
36620	295,277.17	10/1/1982	1/1/2003	7397	2,184,165,226
36630	24,721.44	6/1/1984	1/1/2003	6788	167,809,135
36700	9,415.05	11/30/2002	1/1/2003	32	301,282
36700	167,935.13	10/31/2002	1/1/2003	62	10,411,978
36700	38.39	6/30/2000	1/1/2003	915	35,127
36700	6,900.62	5/31/2000	1/1/2003	945	6,521,086
36700	2,522.09	3/31/2000	1/1/2003	1006	2,537,223
36700	2,535,000.00	2/1/1997	1/1/2003	2160	5,475,600,000
36700	512,540.23	9/1/1996	1/1/2003	2313	1,185,505,552
36700	227,443.21	11/1/1995	1/1/2003	2618	595,446,324
36700	62,298.00	5/1/1995	1/1/2003	2802	174,558,996
36700	36.274.02	2/1/1990	1/1/2003	4717	171,104.552
36700	216.76	2/1/1985	1/1/2003	6543	1,418,261
36700	7,183.13	12/1/1983	1/1/2003	6971	50,073.599
36700	(3,489.56)	12/1/1982	1/1/2003	7336	(25,599,412)
36700	258,336,948.57	10/1/1982	1/1/2003	7397	1,910,918,408,572
36711	1,811.51	11/1/1993	1/1/2003	3348	6,064,935
36800	0.48	9/30/2002	1/1/2003		45
36800	10.680,915.74	7/1/1997	1/1/2003	2010	21,468,640,637
36800	259,729.57	<u>6/1/1997</u>	1/1/2003	2040	529,848,323
36800 36800	<u> </u>	<u> </u>	1/1/2003	2344	19,608,474
36800	50,604.17	9/1/1994	1/1/2003	3044	(510,611,238)
36800	12,775.50	4/1/1987	1/1/2003	5754	73,510,227
36800	30,552.53	12/1/1983	1/1/2003	<u></u>	212,981,687
36800	3,677.19	10/1/1983	1/1/2003	7032	25,858,000
36800	294,740.56	10/1/1982	1/1/2003	7397	2,180,195,922
36901	9,654 47	11/30/2002	1/1/2003	32	308,943
36901	39,237.20	10/31/2002	1/1/2003	62	2,432,706
36901	14,505.51	2/1/1995	1/1/2003	2891	41,935,429
36901	15,116.97	11/1/1993	1/1/2003	3348	50.611,616
36901	12,374.53	9/1/1991	1/1/2003	4140	51,230,554
36901	5.575.27	8/1/1985	1/1/2003	6362	35,469.868
36901	3,505,973 57	10/1/1982	1/1/2003	7397	25,933,686.497
37001	20,382 98	2/1/1985	1/1/2003	6543	133,365,838
37001	30,041.13	12/1/1984	1/1/2003	6605	198,421,664
37001	262,002.01	10/1/1982	1/1/2003	7397	1,938,028,868
37002	7.473 76	8/1/1993	1/1/2003	3440	25,709,734
37002	2,178 16	6/1/1991	1/1/2003	4232	9,217,973
37002	4,991.62	6/1/1990	1/1/2003	4597	22,946,477
37002	36,197 32	12/1/1989	1/1/2003	4779	172,986.992
37002	11.888.07	4/1/1989	1/1/2003	5023	<u>59,713,776</u>
37002	7,552.00	3/1/1985	1/1/2003	6515	49,201,280
37002	561,549 69	10/1/1982	1/1/2003	7397	4,153,783,057
37002	2,149,77	7/1/1982	1/1/2003		16.099,628
37002	2.010 81	6/1/1982	1/1/2003		15,119,280
pansion	47,109,740 93	5/31/2002	1/1/2003	215	10,128,594,300
xal	326.541,457.56	· · · · · · · · · · · · · · · · · · ·		• • • • • • •	1.998,504,477,806
· · · · · -	····	·		• • • • • • • •	6120 216688
	··· · · · · · ·	·····		···· · · · · · · · · ·	
				_	<u>16 77</u>

Exhibit No. S-12 Page 12 of 24 pages. RP03-162-000, Workpapers

.

Traulblaner

Exhibit No. S-12 Page 13 of 24 pages. RP03-162-000, Workpapers

•

.

LP03-162	• •	•		• • • • • • • • • • • • • • • • • • • •	
xisting plan	t, only account 368-c	ompressor station	equipment	· · ·······	
	płant	in service date	current	age in weighter days cost	d
				•••••••••	·
36610 36610	0.00	12/31/2002 7/1/1984	1/1/2003	6758	
36610	0.00	6/1/1984	1/1/2003	6788	· — · -
36610	0.00	10/1/1982	1/1/2003	7397	
36620	0.00	5/31/2000	1/1/2003	945	•
36620	0.00	11/1/1993	1/1/2003	3348	· · <u> </u>
36620	0.00	9/1/1991	1/1/2003	4140	<u> </u>
36620	0.00	10/1/1982	1/1/2003	7397	
36630	0.00	6/1/1984	1/1/2003	6788	
36700	0.00	11/30/2002	1/1/2003	32	
36700	0.00	10/31/2002	1/1/2003	62	
36700	0.00	6/30/2000	1/1/2003	915	
36700	0.00	5/31/2000	1/1/2003	945	
36700	0.00		1/1/2003	1006	
36700	0.00	2/1/1997	1/1/2003	2160	
36700	0.00	9/1/1996	1/1/2003	2313	
36700	0.00	11/1/1995	1/1/2003	2618	
. 36700	0.00	5/1/1995	1/1/2003	2802	
36700	0.00	2/1/1990	1/1/2003	4717	
36700	0.00	2/1/1985	1/1/2003	6543	
_ <u>36700</u> 36700	0.00	<u>12/1/1983</u> 12/1/1982	<u>1/1/2003</u> 1/1/2003	<u>6971</u> 7336	
36700	0.00	10/1/1982	1/1/2003	7397	
36711	0.00	11/1/1993	1/1/2003	3348	
36800	0.48	9/30/2002	1/1/2003	93	
36800	10,680,915.74	7/1/1997	1/1/2003	· · · · · · · · · · · · · · · · ·	468,640,6
36800	259,729.57	6/1/1997	1/1/2003		529.848.3
36800	8,365.39	8/1/1996	1/1/2003	2344	19,608,4
36800	(195,038.67)	11/1/1995	1/1/2003		510,611,2
36800	50,604.17	9/1/1994	1/1/2003		154,039,0
36800	12,775.50	4/1/1987	1/1/2003	5754	73,510,22
36800	30,552.53	12/1/1983	1/1/2003	6971 2	212,981,61
36800	3.677.19	10/1/1983	1/1/2003	7032	25,858,0
36800	294,740.56	10/1/1982	1/1/2003	7397 2,1	180,195,92
36901	0.00	11/30/2002	1/1/2003	32	
36901	0.00	10/31/2002	1/1/2003	62	
36901	0.00	2/1/1995	1/1/2003	2891	
36901	0.00	11/1/1993	1/1/2003	3348	
36901	0.00	9/1/1991	1/1/2003	4140	
_36901	0.00	8/1/1985	1/1/2003	<u>6362</u> 7397	
36901 37001	0.00	2/1/1982	1/1/2003	6543	
37001	0.00	12/1/1983	1/1/2003	6605	
37001	0.00	10/1/1982	1/1/2003	7397	
37002	0.00	8/1/1993	1/1/2003	3440	
37002	0.00	6/1/1991	1/1/2003	4232	
37002	0.00	6/1/1990	1/1/2003	4597	
37002	0.00	12/1/1989	1/1/2003	4779	
37002	0.00	4/1/1989	1/1/2003	5023	
37002	0.00	3/1/1985	1/1/2003	6515	
37002	0.00	10/1/1982	1/1/2003	7397	·
37002	0.00	7/1/1982	1/1/2003	7489	
37002	0.00	6/1/1982	1/1/2003	7519	
			_ _ _	· • · · · · · · · · · · · · · · · · · ·	
	11,146,322.46			24,1	54,071,17
-	·			· · · · ····	2166 9991
				7	(100.999)

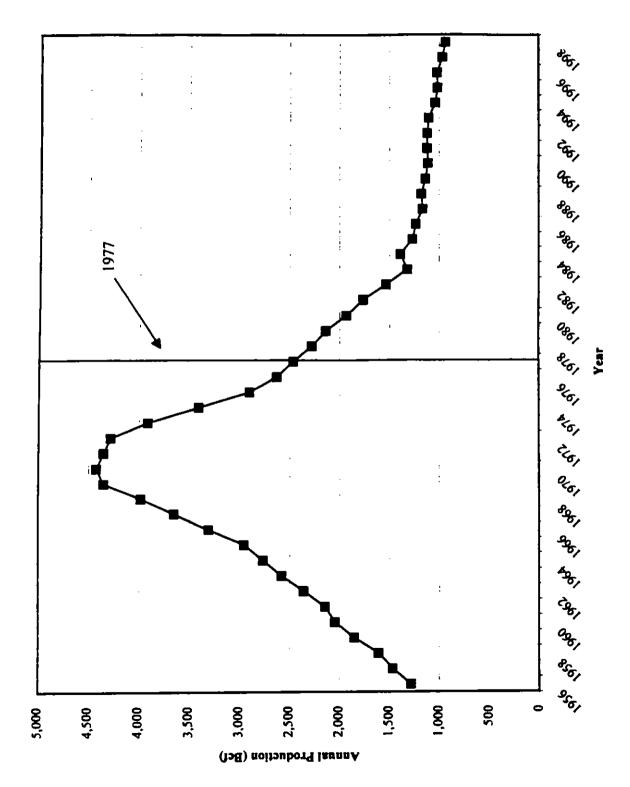
. . RP03-162 existing plant, without acct 368--compressor station equipment in service current et in weighted Account plant date date davs cost 12/31/2002 36610 30.107.46 1/1/2003 30,107 36610 21.305.41 7/1/1984 1/1/2003 6758 143,981,961 36610 33,133.34 6/1/1984 1/1/2003 6788 224,909,112 36610 338.657.81 10/1/1982 1/1/2003 7397 9,902,051,821 36620 76,225.75 5/31/2000 1/1/2003 945 72.033,334 36620 7.338.57 11/1/1993 1/1/2003 3348 24,569,532 36620 4,735.23 9/1/1991 1/1/2003 4140 19.603.852 36620 295,277.17 10/1/1982 1/1/2003 7397 2,184,165,226 36630 24,721.44 6/1/1984 1/1/2003 6788 167.809.135 36700 9,415.05 11/30/2002 1/1/2003 32 301,282 36700 167,935.13 10/31/2002 1/1/2003 62 10,411,978 36700 38.39 6/30/2000 915 1/1/2003 35,127 6,900.62 36700 5/31/2000 1/1/2003 945 6,521,086 36700 2,522.09 3/31/2000 1/1/2003 1006 2,537,223 1/1/2003 36700 2,535,000.00 2/1/1997 5,475,600,000 2160 36700 512,540.23 9/1/1996 1/1/2003 2313 1,185,505,552 36700 227,443.21 11/1/1995 1/1/2003 2618 595,446,324 36700 62,298.00 5/1/1995 1/1/2003 2802 174.558,996 36700 36.274.02 2/1/1990 1/1/2003 4717 171,104,552 36700 216.76 2/1/1985 1/1/2003 6543 1,418,261 36700 7,183.13 12/1/1983 1/1/2003 6971 50,073,599 36700 (3,489.56) 12/1/1982 1/1/2003 7336 (25, 599, 412)36700 258.336.948.57 10/1/1982 1/1/2003 7397 1,910,918,408.572 36711 1.811.51 11/1/1993 1/1/2003 3348 6,064,935 36800 0.00 9/30/2002 1/1/2003 93 0 36800 0.00 7/1/1997 1/1/2003 2010 Λ 36800 0.00 6/1/1997 1/1/2003 2040 0 36800 0.00 8/1/1996 1/1/2003 2344 Q 36800 0.00 11/1/1995 1/1/2003 2618 0 36800 0.00 9/1/1994 1/1/2003 3044 Ó 36800 4/1/1987 0.00 1/1/2003 5754 ō 12/1/1983 36800 0.00 1/1/2003 6971 0 36800 0.00 10/1/1983 1/1/2003 7032 0 36800 0.00 10/1/1982 1/1/2003 7397 0 9.654 47 36901 11/30/2002 1/1/2003 32 308,943 36901 39,237.20 10/31/2002 1/1/2003 62 2,432,706 36901 14.505.51 2/1/1995 1/1/2003 2891 41,935,429 36901 15,116 97 11/1/1993 1/1/2003 3348 50,611,616 36901 12.374.53 9/1/1991 1/1/2003 4140 51,230,554 5.575.27 36901 8/1/1985 1/1/2003 6362 35,469,868 36901 505,973.57 10/1/1982 1/1/2003 7397 25,933,686,497 37001 20,382.98 2/1/1985 1/1/2003 6543 133,365,838 37001 30.041.13 12/1/1984 1/1/2003 6605 198.421.664 37001 262,002.01 10/1/1982 1/1/2003 7397 1,938,028,868 37002 7.473.76 8/1/1993 1/1/2003 3440 25,709,734 37002 2,178.16 6/1/1991 1/1/2003 4232 9.217.973 37002 4,991.62 6/1/1990 1/1/2003 4597 22,946,477 37002 36,197.32 1/1/2003 12/1/1989 4779 172.986,992 37002 11 888 07 4/1/1989 1/1/2003 5023 59,713,776 37002 7.552.00 3/1/1985 1/1/2003 6515 49,201.280 37002 561.549.69 10/1/1982 1/1/2003 7397 4,153,783,057 37002 1/1/2003 2,149.77 7/1/1982 7489 16.099,628 37002 6/1/1982 1/1/2003 2.010.81 7519 15,119,280 268,285,394.17 Total 1,964,221,812,336 7321.389293 20.06

Trailblazer

Exhibit No. S-12 Page 14 of 24 pages. RP03-162-000, Workpapers -

.

.


Exhibit No. S-12 Page 15 of 24 pages. RP03-162-000, Workpapers

Historical Gas Production for South Louisians Onshore (Volume in Bcf)

N	Annual
Year	Production
1956	1,282
1957	1,466
1 958	1,606
1959	1,852
1960	2,046
1961	2,146
1962	2,359
1963	2,579
1964	2,765
1965	2,956
1966	3,308
1967	3,654
1968	3,983
1969	4,352
1970	4,426
1971	4,354
1972	4,284
1973	3,914
1974	3,411
1975	2,905
1976	2,632
1977	2,468
1978	2,279
1979	2,139
1980	1,932
1981	1,764
1982	1,536
1983	1,322
1984	1,391
1985	1,270
1986	1,236
1987	1,167
1988	1,179
1989	1,140
1990	1,113
1991	1,122
1992	1,120
1993	1,105
1994	1,038
1995	1,017
1996	1,022
1997	968
1998	938

Source: Technology Assessment Division of the Louisiana Department of Natural Resources.

Exhibit No. S-12 Page 16 of 24 pages. RP03-162-000, Workpapers

Extrapolation of South Louisiana Gas Production

.

Exhibit No. S-12 Page 17 of 24 pages. RP03-162-000, Workpapers

AVERAGE SERVICE LIFE IS 65.00SURVIVOR CURVE IS ALL TRUNCATION IN 34.00YFAPM AFTER OBSERVATION YEAR.

05.YEAR	AVE SI.	RITEE	R.L./ASL	CUR & SURV	SURV	TRUNC
1.00	32.9	32.4	. 9855	99.93	87.86	. None
2.00	33.8	32.4	. 9578	99.78	87.19	
3.00	34.7	32.3	. 9316	99.€2	86.50	
4.00	35.5	32.2	. 9067	99.45	85.78	
5.00	36.4	32.1	.8831	99.27	95.03	
6.00	37.2	32.0	.8607	99.09	84.26	
7.00	38.1	31.9	.8394	98.69	83.45	
8.00	38.9	31.8	.8190	98.69	82.62	
9.00	39.7	31.7	.7996	98.47	81.77	
10.00	40.5	31.6	.7811	98.25	80.88	
11.00	41.3	31.5	.7634	98.01	79.96	
12.00	42.1	31.4	.7464	97.77	79.01	
13.00	42.9	31.3	.7301	97.51	78.03	
14.00	43.7	31.2	.7145	97.24	77.02	
15.00	44.4	31.1	. 6994	96.95	75.97	
16.00	45.2	31.0	.6850	96.06	74.89	
17.00	45.9	30.8	.6711	96.35	73.78	
18.00	46.7	30.7	.6576	96.02	72.64	
19.00	47.4	30.6	. 6447	95.68	71.46	
20.00	48.1	30.4	. 6322	95.33		
21.00	48.8 49.5	30.3 30.1	.6201	94.96		
22.00 23.00	49.5 50.2	29.9	.6084 .5970	94.57	67.73	
23.00	50.2	29.9	.5860	94.17 ^{, 77} 93.75	66.42 65.07	
24.00	51.5	29.6	.5753	93.32	63.70	
25.00	52.1	29.4	.5649	92.86	62.29	
27.00	52.7	29.2	.5548	92.39	60.85	
28.00	53.3	29.0	. 5449	91.90	59.38	
29.00	53.9	28.8	. 5353	91.39	57.89	
30.00	54.5	28.6	. 5259	90.85	56.36	
31.00	55.0	28.4	.5167	90.30	54.81	
32.00	55.6	28.2	.5078	89.72	53.23	
33.00	56.1	28.0	.4990	89.13	51.64	
34.00	56.6	27.8	.4904	88.50	50.02	
35.00	57.1	27.5	.4820	87.86	48.38	
36.00	57.6	27.3	.4737	67.19	46.73	
37.00	58.0	27.0	.4656	86.50	45.07	
38.00	58.5	26.7	.4576	85.78	43.40	
39.00	58.9	26.5	.4497	85.03	41.72	
40.00	59.3	26.2	.4419	84.26	40.03	
41.00	59.7	25.9	.4343	83.45	38.35	
42.00	ðC.1	25.6	.4267	82.02	36.67	
43.00	60.4	25.3	.4193	81.77	35.00	
44.00	60.8	25.0	.4119	80.58	33.34	
45.00	61.1	24.7	.4046	79.96	31.69	
46.00	61.4	24.4	.3974	79.01	30.06	
47.00	61.7	24.1	.3902	78.03	28.46	
48.00	62.0	23.7	.3831		26.88	
49.00	62.2	23.4	.3761	75.37	25.32	

Exhibit No. S-12 Page 18 of 24 pages. RP03-162-000, Workpapers

.

AVERAGE SERVICE LIFE IS 30.00SURVIVOR CUPVE IS R3 TRUNCATION IS 34.00YEARS AFTER OBSERVATION YEAR.

OS.YEAR	AVE.SL	R.LIFE	R.L./ASL	CUR & SURV	SURV TRUNC
1.00	28.6	28.1	.9828	99.97	31.98
2.00	28.9	27.5	. 9491	99.91	27.11
3.00	29.2	26.7	.9160	99.82	22.54
4.00	29.4	26.0	.8836	99.71	18.35
5.00	29.6	25.2	.8516	99.57	14.62
6.00	29.7	24.3	.8201	99.40	11.37
7.00	29.8	23.5	.7888	99.18	8.60
8.00	29.9	22.6	.7580	98.92	6.32
9.00	29.9	21.8	.7274	98.60	4.47
10.00	29.9	20.9	.6972	98.21	3.01
11.00	30.0	20.0	.6673	97.75	1.91
12.00	30.0	19.1	.6378	97.20	1.11
13.00	30.0	18.3	.6087	96.56	. 56
14.00	30.0	17.4	.5800	95.21	.24

.

•

	Exhibit No. S-12 Page 19 of 24 pages. RP03-162-000, Workpapers
· · ·	
•	
C. C.	

	E. 4 144.	chin 11 - Chin all				Tur Cur
Kow						
115 92 6000 116 1149						
160 0 5 6 10 161 0 - 1 5 6 10 122 - Deliny Frick Au 183 - Samurthe System			2 <u>7</u> <u>6</u>			
						• ·
						RP03
						Exhibit No. 5 Page 20 of 24 pa -162-000, Workpa
						ges.

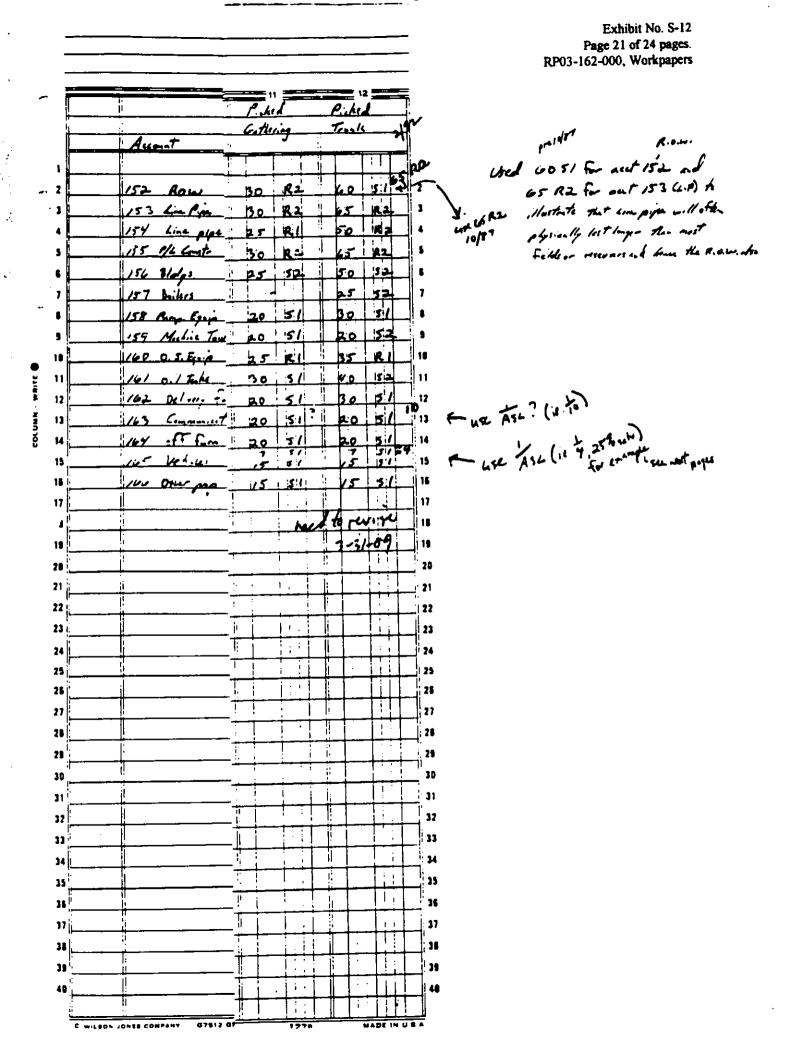


Exhibit No. S-12 Page 22 of 24 pages. RP03-162-000, Workpapers

Northwest Pipeline Corporation Docket No. RP95-409-000 FERC Staff Data Request - KJP October 20, 1995

Request KJP-14

Provide support and all workpapers for the proposed lives of each General Plant account.

Response:

Refer to the workpapers below for General Plant depreciation lives.

The workpapers have been subdivided into four parts as follows:

Part 1 - Includes memos and attachments relating to computers, communication equipment, communication structures and SCADA. Among other things, the documentation shows that Northwest's 386 and 486 computer equipment was held (on a weighted average basis) a total of 3.1 years.

Part 2A - Reflects the average length of service for retirements (on a weighted average basis) for assets proposed to be reclassified from transmission to general plant. In summary, the average length of service for these assets is as follows:

Communication Equipment -	6.97 years
Communication Structures -	17.68 years
Land Rights -	11.02 years
Computers -	5.74 years
Office Furniture and Equipment -	12.30 years
Tools and Equipment -	9.44 years
SCADA -	4.83 years

Part 2B - Reflects the average length of service for retirements (on a weighted average basis) for all other general plant not reflected in Part 2A. In summary, the average length of service for these assets is as follows:

Computers	3.72 years
Transportation Equipment - Vehicles -	3.12 years
Communication Equipment -	10.28 years
SCADA -	7.90 years
Tools and Equipment -	10.99 years

Part 3 - Reflects average age calculations for general plant at 12/31/94. The following summarizes the results.

-		4	Exhibit No. S-12 Page 23 of 24 pages. RP03-162-000, Workpapers
		، ركتم	·
	Potlad, RPOZ-13		
	VV NW	c-mes	
39/	·FF. 10 15 10 15 12.3		-
392	transpor 5 5 3.12	7.4	
393	rtimes 5 5 5	15-	
394	Anti 10 10 9.44		
- 157	ram!0 10 .01 6.97		
	anise 15 20 20 (15)		
_ 359	other they ble 3 x		
			•
		••• •	
Ì			
f			
ļ ļ		-	· · · ·
 			<u>-</u> .
			-
			·
1			
•	1		• ·
-	 		.
· 1	1	••••••••••••••••••••••••••••••••••••••	· · · · · · · · · · · · · · · · · · ·

.

Exhibit No. S-12 Page 24 of 24 pages. RP03-162-000, Workpapers

Trailblazer Pipeline Company Docket No. RP03-162-000 from Exhibit No. TPC-56, Schedule No. F, page 1 of 2 pages

.

.

(1) (2) (3) (4)

Row		Year	Rem. Life		Future Delivery	Weighted Delivery
	(1)	2003		0.5	600	300
	(2)	2004	•	1.5	604	906
	(3)	2005	i	2.5	600	1,500
	(4)	2006		3.5	586	2,051
	(5)	2007		4.5	563	2,534
Total					2,953	7,291
Avg. Rem. Life, (4)/(3)					2.47	